949 resultados para antimalarial drug resistance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

National malaria control programmes have the responsibility to develop a policy for malaria disease management based on a set of defined criteria as efficacy, side effects, costs and compliance. These will fluctuate over time and national guidelines will require periodic re-assessment and revision. Changing a drug policy is a major undertaking that can take several years before being fully operational. The standard methods on which a decision can be taken are the in vivo and the in vitro tests. The latter allow a quantitative measurement of the drug response and the assessment of several drugs at once. However, in terms of drug policy change its results might be difficult to interpret although they may be used as an early warning system for 2nd or 3rd line drugs. The new WHO 14-days in vivo test addresses mainly the problem of treatment failure and of haematological parameters changes in sick children. It gives valuable information on whether a drug still `works'. None of these methods are well suited for large-scale studies. Molecular methods based on detection of mutations in parasite molecules targeted by antimalarial drugs could be attractive tools for surveillance. However, their relationship with in vivo test results needs to be established

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current methods used to genotype point mutations in Plasmodium falciparum genes involved in resistance to antifolate drugs include restriction digestion of PCR products, allele-specific amplification or sequencing. Here we demonstrate that known point mutations in dihydrofolate reductase and dihydropteroate synthase can be scored quickly and accurately by single-nucleotide primer extension and detection of florescent products on a capillary sequencer. We use this method to genotype parasites in natural infections from the Thai-Myanmar border. This approach could greatly simplify large-scale screening of resistance mutations of the type required for evaluating and updating antimalarial drug treatment policies. The method can be easily adapted to other P. falciparum genes and will greatly simplify scoring of point mutations in this and other parasitic organisms. © 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the use of a simple formulary, field by health agents was ewstablished a monitoring programme for responses of P. falciparum to the antimalarial drugs. This monitoring programme is emphasized for knowledge of the epidemiology of the drug resistance and the control of malaria falciparum in Amazonan Basin where occurs more than 95% of Brazilian malaria cases every year. It was demonstrated that still now 4-aminoquinolines have a great importance for the mortality control in areas where just SUCAM (National Health Foundation - Health Ministry) agenst are present without any medical assistance. The results obtained permitted the simplification of malaria treatment in Brazil Important conclusions were established in the field of malaria drug resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From March 1996 to August 1997, a study was carried out in a malaria endemic area of the Brazilian Amazon region. In vivo sensitivity evaluation to antimalarial drugs was performed in 129 patients. Blood samples (0.5 ml) were drawn from each patient and cryopreserved to proceed to in vitro studies. In vitro sensitivity evaluation performed using a radioisotope method was carried out with the cryopreserved samples from September to December 1997. Thirty-one samples were tested for chloroquine, mefloquine, halofantrine, quinine, arteether and atovaquone. Resistance was evidenced in 96.6% (29/30) of the samples tested for chloroquine, 3.3% (1/30) for quinine, none (0/30) for mefloquine and none for halofantrine (0/30). Overall low sensitivity was evidenced in 10% of the samples tested for quinine, 22.5% tested for halofantrine and in 20% tested for mefloquine. Means of IC 50 values were 132.2 (SD: 46.5) ng/ml for chloroquine, 130.6 (SD: 49.6) ng/ml for quinine, 3.4 (SD: 1.3) ng/ml for mefloquine, 0.7 (SD: 0.3) ng/ml for halofantrine, 1 (SD: 0.6) ng/ml for arteether and 0.4 (SD: 0.2) ng/ml for atovaquone. Means of chloroquine IC 50 of the tested samples were comparable to that of the chloroquine-resistant strain W2 (137.57 ng/ml) and nearly nine times higher than that of the chloroquine-sensitive strain D6 (15.09 ng/ml). Means of quinine IC 50 of the tested samples were 1.7 times higher than that of the low sensitivity strain W2 (74.84 ng/ml) and nearly five times higher than that of the quinine-sensitive strain D6 (27.53 ng/ml). These results disclose in vitro high resistance levels to chloroquine, low sensitivity to quinine and evidence of decreasing sensitivity to mefloquine and halofantrine in the area under evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malaria remains a major world health problem following the emergence and spread of Plasmodium falciparum that is resistant to the majority of antimalarial drugs. This problem has since been aggravated by a decreased sensitivity of Plasmodium vivax to chloroquine. This review discusses strategies for evaluating the antimalarial activity of new compounds in vitro and in animal models ranging from conventional tests to the latest high-throughput screening technologies. Antimalarial discovery approaches include the following: the discovery of antimalarials from natural sources, chemical modifications of existing antimalarials, the development of hybrid compounds, testing of commercially available drugs that have been approved for human use for other diseases and molecular modelling using virtual screening technology and docking. Using these approaches, thousands of new drugs with known molecular specificity and active against P. falciparum have been selected. The inhibition of haemozoin formation in vitro, an indirect test that does not require P. falciparum cultures, has been described and this test is believed to improve antimalarial drug discovery. Clinical trials conducted with new funds from international agencies and the participation of several industries committed to the eradication of malaria should accelerate the discovery of drugs that are as effective as artemisinin derivatives, thus providing new hope for the control of malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The Thai-Cambodian border has been known as the origin of antimalarial drug resistance for the past 30 years. There is a highly diverse market for antimalarials in this area, and improved knowledge of drug pressure would be useful to target interventions aimed at reducing inappropriate drug use. METHODS: Baseline samples from 125 patients with falciparum malaria recruited for 2 in vivo studies (in Preah Vihear and Pursat provinces) were analyzed for the presence of 14 antimalarials in a single run, by means of a liquid chromatography-tandem mass spectrometry assay. RESULTS: Half of the patients had residual drug concentrations above the lower limit of calibration for at least 1 antimalarial at admission. Among the drugs detected were the currently used first-line drugs mefloquine (25% and 35% of patients) and piperaquine (15% of patients); the first-line drug against vivax malaria, chloroquine (25% and 41% of patients); and the former first-line drug, quinine (5% and 34% patients). CONCLUSIONS: The findings demonstrate that there is high drug pressure and that many people still seek treatment in the private and informal sector, where appropriate treatment is not guaranteed. Promotion of comprehensive behavioral change, communication, community-based mobilization, and advocacy are vital to contain the emergence and spread of parasite resistance against new antimalarials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continual exposure of malarial parasite populations to different drugs may have selected not only for resistance to individual drugs but also for genetic traits that favor initiation of resistance to novel unrelated antimalarials. To test this hypothesis, different Plasmodium falciparum clones having varying numbers of preexisting resistance mechanisms were treated with two new antimalarial agents: 5-fluoroorotate and atovaquone. All parasite populations were equally susceptible in small numbers. However, when large populations of these clones were challenged with either of the two compounds, significant variations in frequencies of resistance became apparent. On one extreme, clone D6 from West Africa, which was sensitive to all traditional antimalarial agents, failed to develop resistance under simple nonmutagenic conditions in vitro. In sharp contrast, the Indochina clone W2, which was known to be resistant to all traditional antimalarial drugs, independently acquired resistance to both new compounds as much as a 1,000 times more frequently than D6. Additional clones that were resistant to some (but not all) traditional antimalarial agents acquired resistance to atovaquone at high frequency, but not to 5-fluoroorotate. These findings were unexpected and surprising based on current views of the evolution of drug resistance in P. falciparum populations. Such new phenotypes, named accelerated resistance to multiple drugs (ARMD), raise important questions about the genetic and biochemical mechanisms related to the initiation of drug resistance in malarial parasites. Some potential mechanisms underlying ARMD phenotypes have public health implications that are ominous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multicopy var gene family encoding the variant surface antigen Plasmodium falciparum erythrocyte membrane protein 1 is highly diverse, with little overlap between different P. falciparum isolates. We report 5 var genes (varS1-varS5) that are shared at relatively high frequency among 63 genetically diverse P. falciparum isolates collected from 5 islands in the West Pacific region. The varS1, varS2, and varS3 genes were localized to the internal region on chromosome 4, similar to 200 kb from pfdhfr-ts, whereas varS4 and varS5 were mapped to an internal region of chromosome 7, within 100 kb of pfcrt. The presence of varS2 and varS3 were significantly correlated with the pyrimethamine-resistant pfdhfr genotype, whereas varS4 was strongly correlated with the chloroquine-resistant pfcrt genotype. Thus, the conservation of these var genes is the result of their physical linkage with drug-resistant genes in combination with the antimalarial drug pressure in the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing problem of drug resistance has greatly complicated the treatment for falciparum malaria. Whereaschloroquine and sulfadoxine/ pyrimethamine could once cure most infections, this is no longer true and requiresexamination of alternative regimens. Not all treatment failures are drug resistant and other issues such asexpired antimalarials and patient compliance need to be considered. Continuation of a failing treatment policyafter drug resistance is established suppresses infections rather than curing them, leading to increasedtransmission of malaria, promotion of epidemics and loss of public confidence in malaria control programs.Antifolate drug resistance (i.e. pyrimethamine) means that new combinations are urgently needed particularlybecause addition of a single drug to an already failing regimen is rarely effective for very long. Atovaquone/proguanil and mefloquine have been used against multiple drug resistant falciparum malaria with resistance toeach having been documented soon after drug introduction. Drug combinations delay further transmission ofresistant parasites by increasing cure rates and inhibiting formation of gametocytes. Most currentlyrecommended drug combinations for falciparum malaria are variants of artemisinin combination therapy wherea rapidly acting artemisinin compound is combined with a longer half-life drug of a different class. Artemisininsused include dihydroartemisinin, artesunate, artemether and companion drugs include mefloquine, amodiaquine,sulfadoxine/ pyrimethamine, lumefantrine, piperaquine, pyronaridine, chlorproguanil/dapsone. The standard ofcare must be to cure malaria by killing the last parasite. Combination antimalarial treatment is vital not only tothe successful treatment of individual patients but also for public health control of malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There are few studies on HIV subtypes and primary and secondary antiretroviral drug resistance (ADR) in community-recruited samples in Brazil. We analyzed HIV clade diversity and prevalence of mutations associated with ADR in men who have sex with men in all five regions of Brazil. Methods: Using respondent-driven sampling, we recruited 3515 men who have sex with men in nine cities: 299 (9.5%) were HIV-positive; 143 subjects had adequate genotyping and epidemiologic data. Forty-four (30.8%) subjects were antiretroviral therapy-experienced (AE) and 99 (69.2%) antiretroviral therapy-naive (AN). We sequenced the reverse transcriptase and protease regions of the virus and analyzed them for drug resistant mutations using World Health Organization guidelines. Results: The most common subtypes were B (81.8%), C (7.7%), and recombinant forms (6.9%). The overall prevalence of primary ADR resistance was 21.4% (i.e. among the AN) and secondary ADR was 35.8% (i.e. among the AE). The prevalence of resistance to protease inhibitors was 3.9% (AN) and 4.4% (AE); to nucleoside reverse transcriptase inhibitors 15.0% (AN) and 31.0% (AE) and to nonnucleoside reverse transcriptase inhibitors 5.5% (AN) and 13.2% (AE). The most common resistance mutation for nucleoside reverse transcriptase inhibitors was 184V (17 cases) and for nonnucleoside reverse transcriptase inhibitors 103N (16 cases). Conclusions: Our data suggest a high level of both primary and secondary ADR in men who have sex with men in Brazil. Additional studies are needed to identify the correlates and causes of antiretroviral therapy resistance to limit the development of resistance among those in care and the transmission of resistant strains in the wider epidemic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods. We studied participants with acute and/or early HIV infection and TDR in 2 cohorts (San Francisco, California, and Sao Paulo, Brazil). We followed baseline mutations longitudinally and compared replacement rates between mutation classes with use of a parametric proportional hazards model. Results. Among 75 individuals with 195 TDR mutations, M184V/I became undetectable markedly faster than did nonnucleoside reverse-transcriptase inhibitor (NNRTI) mutations (hazard ratio, 77.5; 95% confidence interval [CI], 14.7-408.2; P < .0001), while protease inhibitor and NNRTI replacement rates were similar. Higher plasma HIV-1 RNA level predicted faster mutation replacement, but this was not statistically significant (hazard ratio, 1.71 log(10) copies/mL; 95% CI, .90-3.25 log(10) copies/mL; P = .11). We found substantial person-to-person variability in mutation replacement rates not accounted for by viral load or mutation class (P < .0001). Conclusions. The rapid replacement of M184V/I mutations is consistent with known fitness costs. The long-term persistence of NNRTI and protease inhibitor mutations suggests a risk for person-to-person propagation. Host and/or viral factors not accounted for by viral load or mutation class are likely influencing mutation replacement and warrant further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trichomoniasis is the most common, sexually transmitted infection. It is caused by the flagellated protozoan parasite Trichomonas vaginalis. Symptoms include vaginitis and infections have been associated with preterm delivery, low birth weight and increased infant mortality, as well as predisposing to HIV/AIDS and cervical cancer. Trichomoniasis has the highest prevalence and incidence of any sexually transmitted infection. The 5-nitroimidazole drugs, of which metronidazole is the most prescribed, are the only approved, effective drugs to treat trichomoniasis. Resistance against metronidazole is frequently reported and cross-resistance among the family of 5-nitroimidazole drugs is common, leaving no alternative for treatment, with some cases remaining unresolved. The mechanism of metronidazole resistance in T. vaginalis from treatment failures is not well understood, unlike resistance which is developed in the laboratory under increasing metronidazole pressure. In the latter situation, hydrogenosomal function which is involved in activation of the prodrug, metronidazole, is down-regulated. Reversion to sensitivity is incomplete after removal of drug pressure in the highly resistant parasites while clinically resistant strains, so far analysed, maintain their resistance levels in the absence of drug pressure. Although anaerobic resistance has been regarded as a laboratory induced phenomenon, it clearly has been demonstrated in clinical isolates. Pursuit of both approaches will allow dissection of the underlying mechanisms. Many alternative drugs and treatments have been tested in vivo in cases of refractory trichomoniasis, as well as in vitro with some successes including the broad spectrum anti-parasitic drug nitazoxanide. Drug resistance incidence in T. vaginalis appears to be on the increase and improved surveillance of treatment failures is urged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extended-spectrum β-lactamases (ESBLs) prevalence was studied in the north of Portugal, among 193 clinical isolates belonging to citizens in a district in the boundaries between this country and Spain from a total of 7529 clinical strains. In the present study we recovered some members of Enterobacteriaceae family, producing ESBL enzymes, including Escherichia coli (67.9%), Klebsiella pneumoniae (30.6%), Klebsiella oxytoca (0.5%), Enterobacter aerogenes (0.5%), and Citrobacter freundii (0.5%). β-lactamases genes blaTEM, blaSHV, and blaCTX-M were screened by polymerase chain reaction (PCR) and sequencing approaches. TEM enzymes were among the most prevalent types (40.9%) followed by CTX-M (37.3%) and SHV (23.3%). Among our sample of 193 ESBL-producing strains 99.0% were resistant to the fourth-generation cephalosporin cefepime. Of the 193 isolates 81.3% presented transferable plasmids harboring genes. Clonal studies were performed by PCR for the enterobacterial repetitive intragenic consensus (ERIC) sequences. This study reports a high diversity of genetic patterns. Ten clusters were found for E. coli isolates and five clusters for K. pneumoniae strains by means of ERIC analysis. In conclusion, in this country, the most prevalent type is still the TEM-type, but CTX-M is growing rapidly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

M. tuberculosis-positive cultures were obtained from 228 patients seen in our service and drug sensitivity assays were carried out from January 1992 to December 1994. A survey of the medical records of these patients showed resistance to one or more drugs in 47 (20.6%), 25 of whom (10.9%), who reported previous treatment, were considered to have acquired resistance. Among the antecedents investigated, only previous treatment and alcoholism were the factors independently associated with the occurrence of resistance. The survival of patients with resistant strains was lower than that of patients attacked by non-resistant M. tuberculosis. We conclude that in the present series M. tuberculosis resistance to tuberculostatic agents was predominantly of the acquired type.