984 resultados para amorphous Ge20As55Se55 films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous carbon-sulfur (a-C:S) composite films were prepared by vapor phase pyrolysis technique. The structural changes in the a-C:S films were investigated by electron microscopy. A powder X-ray diffraction (XRD) study depicts the two-phase nature of a sulfur-incorporated a-C system. The optical bandgap energy shows a decreasing trend with an increase in the sulfur content and preparation temperature. This infers a sulfur incorporation and pyrolysis temperature induced reduction in structural disorder or increase in sp (2) or pi-sites. The presence of sulfur (S 2p) in the a-C:S sample is analyzed by the X-ray photoelectron spectroscopy (XPS). The sp (3)/sp (2) hybridization ratio is determined by using the XPS C 1s peak fitting, and the results confirm an increase in sp (2) hybrids with sulfur addition to a-C. The electrical resistivity variation in the films depends on both the sulfur concentration and the pyrolysis temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous conducting carbon films are prepared by plasma assisted chemical vapour deposition and their d.c. conductivity (similar to 100 Scm(-1)) is studied from 300K down to 4.2K. The films were irradiated by high energy ion beam(I+13, 170 MeV) with a dose of 10(13) ions/cm(2). As a result a marked decrease in conductivity by two to three orders in magnitude was observed. The structural changes and the defects in the films caused by ion irradiation are studied using photoluminescence, persistent photoconductivity, and ESR spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser micro-Raman spectroscopic measurements were done on the amorphous conducting carbon films obtained from maleic anhydride by pyrolysis process. We have found a predominant broad peak around 1140 cm(-1), in addition to the normally observed peaks in amorphous carbons around 1350 and 1600 cm(-1), and peak of medium intensity around 800 cm(-1). Here we discuss the possibility of conjugated polymer like bond alternating structure which can give rise to these unusual Raman features. (C) 1997 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous thin films of different Al–Fe compositions were produced by plasma/vapor quenching during pulsed laser deposition. The chosen compositions Al72Fe28, Al40Fe60, and Al18Fe82 correspond to Al5Fe2 and B2-ordered AlFe intermetallic compounds and α–Fe solid solution, respectively. The films contained fine clusters that increased with iron content. The sequences of phase evolution observed in the heating stage transmission electron microscopy studies of the pulsed laser ablation deposited films of Al72Fe28, Al40Fe60, and Al18Fe82 compositions showed evidence of composition partitioning during crystallization for films of all three compositions. This composition partitioning, in turn, resulted in the evolution of phases of compositions richer in Fe, as well as richer in Al, compared to the overall film composition in each case. The evidence of Fe-rich phases was the B2 phase in Al72Fe28 film, the L12- and DO3-ordered phases in Al40Fe60 film, and the hexagonal ε–Fe in the case of the Al18Fe82 film. On the other hand, the Al-rich phases were Al13Fe4 for both Al72Fe28 and Al40Fe60 films and DO3 and Al5Fe2 phases in the case of Al18Fe82 film. We believe that this tendency of composition partitioning during crystallization from amorphous phase is a consequence of the tendency of clustering of the Fe atoms in the amorphous phase during nucleation. The body-centered cubic phase has a nucleation advantage over other metastable phases for all three compositions. The amorphization of Al18Fe82 composition and the evolution of L12 and ε–Fe phases in the Al–Fe system were new observations of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystallization is achieved in amorphous Ge2Sb2Te5 films upon irradiation with a single femtosecond laser pulse. Transmission electron microscopy images evidence the morphology of the crystallized spot which depends on the fluence of the ferntosecond laser pulse. Fine crystalline grains are induced at low fluence, and the coarse crystalline grains are obtained at high fluence. At the damage fluence, ablation of the films occurs. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystallization in amorphous Ge2Sb2Te5 films by irradiation with femtosecond laser was investigated. The reflectivity and X-ray diffraction measurements confirmed that the crystalline state has been achieved in amorphous Ge2Sb2Te5 films under the irradiation of fermosecond laser with an average power of 65 mW at a frequency of 1000 Hz and a pulsed width of 120 fs. The surface morphology before and after femtosecond laser irradiation was studied by scanning electron microscope; results showed that the surface of films with irradiation of femtosecond laser was composed of some the crystallized micro-region. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphology of materials resulting from laser irradiation of the single-layer and the multilayer amorphous Ge2Sb2Te5 films using 120 fs pulses at 800 nm was observed using scanning electron microscopy and atomic force microscopy. For the single-layer film, the center of the irradiated spot is depression and the border is protrusion, however, for the multilayer film, the center morphology changes from a depression to a protrusion as the increase of the energy. The crystallization threshold fluence of the single-layer and the multilayer film is 22 and 23 mJ/cm(2), respectively. (c) 2005 Elsevier B.V. All rights reserved.