998 resultados para alpha carotene
Resumo:
Several components of the metabolic syndrome, particularly diabetes and cardiovascular disease, are known to be oxidative stress-related conditions and there is research to suggest that antioxidant nutrients may play a protective role in these conditions. Carotenoids are compounds derived primarily from plants and several have been shown to be potent antioxidant nutrients. The aim of this study was to examine the associations between metabolic syndrome status and major serum carotenoids in adult Australians. Data on the presence of the metabolic syndrome, based on International Diabetes Federation 2005 criteria, were collected from 1523 adults aged 25 years and over in six randomly selected urban centers in Queensland, Australia, using a cross-sectional study design. Weight, height, BMI, waist circumference, blood pressure, fasting and 2-hour blood glucose and lipids were determined, as well as five serum carotenoids. Mean serum alpha-carotene, beta-carotene and the sum of the five carotenoid concentrations were significantly lower (p<0.05) in persons with the metabolic syndrome (after adjusting for age, sex, education, BMI status, alcohol intake, smoking, physical activity status and vitamin/mineral use) than persons without the syndrome. Alpha, beta and total carotenoids also decreased significantly (p<0.05) with increased number of components of the metabolic syndrome, after adjusting for these confounders. These differences were significant among former smokers and non-smokers, but not in current smokers. Low concentrations of serum alpha-carotene, beta-carotene and the sum of five carotenoids appear to be associated with metabolic syndrome status. Additional research, particularly longitudinal studies, may help to determine if these associations are causally related to the metabolic syndrome, or are a result of the pathologies of the syndrome.
Resumo:
The composition of carotenoids, along with anthocyanins and chlorophyll, accounts for the distinctive range of colour found in the Actinidia (kiwifruit) species. Lutein and beta-carotene are the most abundant carotenoids found during fruit development, with beta-carotene concentration increasing rapidly during fruit maturation and ripening. In addition, the accumulation of beta-carotene and lutein is influenced by the temperature at which harvested fruit are stored. Expression analysis of carotenoid biosynthetic genes among different genotypes and fruit developmental stages identified Actinidia lycopene beta-cyclase (LCY-β) as the gene whose expression pattern appeared to be associated with both total carotenoid and beta-carotene accumulation. Phytoene desaturase (PDS) expression was the least variable among the different genotypes, while zeta carotene desaturase (ZDS), beta-carotene hydroxylase (CRH-β), and epsilon carotene hydroxylase (CRH-ε) showed some variation in gene expression. The LCY-β gene was functionally tested in bacteria and shown to convert lycopene and delta-carotene to beta-carotene and alpha-carotene respectively. This indicates that the accumulation of beta-carotene, the major carotenoid in these kiwifruit species, appears to be controlled by the level of expression of LCY-β gene.
Resumo:
Lutein (3,3'-dihydroxy alpha-carotene), a xanthophyll present in plant chloroplasts, increases the permeability of phospholipid vesicles to Ca2+, even though the pigment does not bind the metal ion. Energy-dependent uptake of Ca2+ by mitochondria is inhibited by lutein, which permits a rapid efflux of the ion from Ca2+-loaded mitochondria. These results are consistent with the view that the deleterious action of lutein on mitochondrial oxidative phosphorylation results from its destabilizing action on membrane structure.
Resumo:
Earlier studies in adults have indicated that increased oxidative stress may occur in the blood and airways of asthmatic subjects. Therefore the aim of this study was to compare the concentrations of antioxidants and protein carbonyls in bronchoalveolar lavage fluid of clinically stable atopic asthmatic children (AA, n = 78) with our recently published reference intervals for nonasthmatic children (C, n = 124). Additionally, lipid peroxidation products (malondialdehyde) in bronchoalveolar lavage fluid and several antioxidants in plasma were determined. Bronchoalveolar lavage concentrations (median and interquartile range) of ascorbate [AA: 0.433 (0.294-0.678) versus C: 0.418 (0.253-0.646) micromol/L], urate [AA: 0.585 (0.412-0.996) versus C: 0.511 (0.372-0.687) micromol/L], alpha-tocopherol [AA: 0.025 (0.014-0.031) versus C: 0.017 (0.017-0.260) micromol/L], and oxidized proteins as reflected by protein carbonyls [AA: 1.222 (0.970-1.635) versus C: 1.243 (0.813-1.685) nmol/mg protein] were similar in both groups (p > 0.05 in all cases). The concentration of protein carbonyls correlated significantly with the number of eosinophils, mast cells, and macrophages in AA children only. Concentrations of oxidized proteins and lipid peroxidation products (malondialdehyde) correlated significantly in AA children (r = 0.614, n = 11, p = 0.044). Serum concentrations of ascorbate, urate, retinol, alpha-tocopherol, beta-carotene, and lycopene were similar in both groups whereas alpha-carotene was significantly reduced in asthmatics. Overall, increased bronchoalveolar lavage eosinophils indicate ongoing airway inflammation, which may increase oxidatively modified proteins as reflected by increased protein carbonyl concentrations.
Resumo:
Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabdities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at postexercise by 17 +/- 5% above preexercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations), resistance of low density lipoprotein to oxidative stress (t(1/2max) LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, alpha-carotene, beta-carotene, alpha-tocopherol, gamma-tocopherol, lycopene and vitamin Q. Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.
Plasma chain-breaking antioxidants in Alzheimer's disease, vascular dementia and Parkinson's disease
Resumo:
We studied the plasma chain-breaking antioxidants alpha carotene, beta carotene, lycopene, Vitamin A, Vitamin C, Vitamin E and a measure of total antioxidant capacity, TAC, in 79 patients with Alzheimer's disease (AD), 37 patients with vascular dementia (VaD), 18 patients with Parkinson's disease and dementia (PDem), and 58 matching controls, together with 41 patients with Parkinson's disease (PD) and 41 matching controls. Significant reductions in individual antioxidants were observed in all dementia groups. When compared to controls, the following were reduced: Vitamin A in AD (p <0.01) and VaD (p <0.001); Vitamin C in AD (p <0.001), VaD (p <0.001) and PDem (p <0.01); Vitamin E in AD (p <0.01) and VaD (p <0.001); beta carotene in VaD (p = 0.01); lycopene in PDem (p <0.001). Lycopene was also reduced in PDem compared to AD (p <0.001) and VaD (p <0.001). Antioxidant levels in PD were not depleted. No significant change in TAC was seen in any group. The reduction in plasma chain-breaking antioxidants in patients with dementia may reflect an increased free-radical activity, and a common role in cognitive impairment in these conditions. Increased free-radical activity in VaD and PDem could be associated with concomitant AD pathology. Individual antioxidant changes are not reflected in TAC.
Resumo:
Objective: To determine whether consumption of five portions of fruit and vegetables per day reduces the enhancement of oxidative stress induced by consumption of fish oil. Subjects: A total of 18 free-living healthy smoking volunteers, aged 18-63 y, were recruited by posters and e-mail in The University of Reading, and by leaflets in local shops. Design: A prospective study. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Intervention: All subjects consumed a daily supplement of 4 x 1 g fish oil capsules for 9 weeks. After 3 weeks, they consumed an additional five portions of fruits and vegetables per day, and then they returned to their normal diet for the last 3 weeks of the study. Fasting blood samples were taken at the ends of weeks 0, 3, 6 and 9. Results: The plasma concentrations of ascorbic acid, lutein, beta-cryptoxanthin, alpha-carotene and beta-carotene all significantly increased when fruit and vegetable intake was enhanced (P<0.05). Plasma concentrations of α-tocopherol, retinol and uric acid did not change significantly during the period of increased fruit and vegetable consumption. Plasma oxidative stability, assessed by the oxygen radical absorbance capacity (ORAC) assay, also increased from weeks 3-6 (P<0.001) but not in association with increases in measured antioxidants. Lag phase before oxidation of low-density lipoprotein (LDL) significantly decreased in the first 3 weeks of the study, reflecting the incorporation of EPA and DHA into LDL (P<0.0001). Subsequent enhanced fruit and vegetable consumption significantly reduced the susceptibility of LDL to oxidation (P<0.005). Conclusion: Fish oil reduced the oxidative stability of plasma and LDL, but the effects were partially offset by the increased consumption of fruit and vegetables.
Resumo:
This study was aimed at determining whether an increase of 5 portions of fruits and vegetables in the form of soups and beverages has a beneficial effect on markers of oxidative stress and cardiovascular disease risk factors. The study was a single blind, randomized, controlled, crossover dietary intervention study. After a 2-wk run-in period with fish oil supplementation, which continued throughout the dietary intervention to increase oxidative stress, the volunteers consumed carotenoid-rich or control vegetable soups and beverages for 4 wk. After a 10-wk wash-out period, the volunteers repeated the above protocol, consuming the other intervention foods. Both test and control interventions significantly increased the % energy from carbohydrates and decreased dietary protein and vitamin B-12 intakes. Compared with the control treatment, consumption of the carotenoid-rich soups and beverages increased dietary carotenoids, vitamin C, alpha-tocopherol, potassium, and folate, and the plasma concentrations of alpha-carotene (362%), beta-carotene (250%) and lycopene (31%) (P < 0.01) and decreased the plasma homocysteine concentration by 8.8% (P < 0.01). The reduction in plasma homocysteine correlated weakly with the increase in dietary folate during the test intervention (r = -0.35, P = 0.04). The plasma antioxidant status and markers of oxidative stress were not affected by treatment. Consumption of fruit and vegetable soups and beverages makes a useful contribution to meeting dietary recommendations for fruit and vegetable consumption.
Resumo:
Objective: To determine whether dietary supplementation with a natural carotenoid mixture counteracts the enhancement of oxidative stress induced by consumption of fish oil. Design: A randomised double-blind crossover dietary intervention. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Subjects and intervention: A total of 32 free-living healthy nonsmoking volunteers were recruited by posters and e-mails in The University of Reading. One volunteer withdrew during the study. The volunteers consumed a daily supplement comprising capsules containing fish oil (4 x 1 g) or fish oil (4 x 1 g) containing a natural carotenoid mixture (4 x 7.6 mg) for 3 weeks in a randomised crossover design separated by a 12 week washout phase. The carotenoid mixture provided a daily intake of beta-carotene (6.0 mg), alpha-carotene (1.4 mg), lycopene (4.5 mg), bixin (11.7 mg), lutein (4.4 mg) and paprika carotenoids (2.2 mg). Blood and urine samples were collected on days 0 and 21 of each dietary period. Results: The carotenoid mixture reduced the fall in ex vivo oxidative stability of low-density lipoprotein (LDL) induced by the fish oil (P = 0.045) and it reduced the extent of DNA damage assessed by the concentration of 8-hydroxy-2'-deoxyguanosine in urine (P = 0.005). There was no effect on the oxidative stability of plasma ex vivo assessed by the oxygen radical absorbance capacity test. beta- Carotene, alpha-carotene, lycopene and lutein were increased in the plasma of subjects consuming the carotenoid mixture. Plasma triglyceride levels were reduced significantly more than the reduction for the fish oil control (P = 0.035), but total cholesterol, HDL and LDL levels were not significantly changed by the consumption of the carotenoid mixture. Conclusions: Consumption of the natural carotenoid mixture lowered the increase in oxidative stress induced by the fish oil as assessed by ex vivo oxidative stability of LDL and DNA degradation product in urine. The carotenoid mixture also enhanced the plasma triglyceride-lowering effect of the fish oil.
Resumo:
Background: Antioxidant status can be used as a biomarker to assess chronic disease risk and diet can modulate antioxidant defence. Objective: To examine effects of vegetarian diet and variations in the habitual intakes of foods and nutrients on blood antioxidants. Subjects and Setting: Thirty-one vegetarians (including six vegans) and 58 omnivores, non-smokers, in Northern Ireland. Design: A diet history method was used to assess habitual diet. Antioxidant vitamins, carotenoids, uric acid, zinc-and ferric-reducing ability of plasma (FRAP) were measured in fasting plasma and activities of glutathione peroxidase (GPX), superoxide dismutase ( SOD) and glutathione S-transferase (GST) and level of reduced glutathione (GSH) were measured in erythrocytes. Results: Vegetarians had approximately 15% higher levels of plasma carotenoids compared with omnivores, including lutein (P <= 0.05), a-cryptoxanthin (P <= 0.05), lycopene (NS), alpha-carotene (NS) and beta-carotene (NS). The levels/activities of all other antioxidants measured were similar between vegetarians and omnivores. Total intake of fruits, vegetables and fruit juices was positively associated with plasma levels of several carotenoids and vitamin C. Intake of vegetables was positively associated with plasma lutein, alpha-cryptoxanthin, alpha-carotene and beta-carotene, whereas intake of fruits was positively associated with plasma beta-cryptoxanthin. Intake of tea and wine was positively associated with FRAP value, whereas intake of herbal tea associated positively with plasma vitamin C. Intakes of meat and fish were positively associated with plasma uric acid and FRAP value. Conclusions: The overall antioxidant status was similar between vegetarians and omnivores. Good correlations were found between intakes of carotenoids and their respective status in blood.
Resumo:
Changes in carotenoid pigment content of Brazilian Valencia orange juices due to thermal pasteurization and concentration were studied. Total carotenoid pigment content loss was not significant after thermal pasteurization and concentration. However, thermal effects on carotenoid pigment contents, especially violaxanthin and lutein, were clearly observed and significant (P < 0.05). Pasteurization reduced the content of violaxanthin by 38% and lutein by 20%. The concentration process resulted in loss of lutein (17%). With the loss of lutein, beta-cryptoxanthin became the major carotenoid in the pasteurized and concentrated juices. The provitarnin A content of the juice (beta-carotene, alpha-carotene and beta-cryptoxanthin) and the amount of zeaxanthin, which are considered to be active against age-related macular degeneration and cataracts, did not significantly decrease after pasteurization and concentration. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The carotenoid composition of Brazilian Valencia orange juice was determined by open column chromatography (OCC) and high-performance liquid chromatography. Carotenoid pigments were extracted using acetone and saponified using 10% methanolic potassium hydroxide. Sixteen pigments were isolated by OCC and identified as alpha-carotene, zeta-carotene, beta-carotene, alpha-cryptoxanthin, beta-cryptoxanthin, lutein-5,6-epoxide, violaxanthin, lutein, antheraxanthin, zeaxanthin, luteoxanthin A, luteoxanthin B, mutatoxanthin A, mutatoxanthin B, auroxanthin B and trollichrome B. Thirteen carotenoid pigments were separated using a ternary gradient (acetonitrile-methanol-ethyl acetate) elution on a C-18 reversed-phase column. Among these, violaxanthin, lutein, zeaxanthin, beta-cryptoxanthin, zeta-carotene, alpha-carotene, and beta-carotene were quantified. The total carotenoid content was 12 +/- 6.7 mg/1, and the major carotenoids were lutein (23%), beta-cryptoxanthin (21%), and zeaxanthin (20%). 2005 Elsevier Ltd. All rights reserved.
Resumo:
This article updates the Brazilian database on food carotenoids. Emphasis is on carotenoids that have been demonstrated important to human health: alpha-carotene, beta-carotene, beta-cryptoxanthin, lycopene, lutein and zeaxanthin. The sampling and sample preparation strategies and the analytical methodology are presented. Possible sources of analytical errors, as well as the measures taken to avoid them, are discussed. Compositional variation due to such factors as variety/cultivar, stage of maturity, part of the plant utilized, climate or season and production technique are demonstrated. The effects of post-harvest handling, preparation, processing and storage of food on the carotenoid composition are also discussed. The importance of biodiversity is manifested by the variety of carotenoid sources and the higher levels of carotenoids in native, uncultivated or semi-cultivated fruits and vegetables in comparison to commercially produced crops. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Assessment of vitamin A status in chronic obstructive pulmonary disease patients and healthy smokers
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)