952 resultados para alpha(2)-adrenoceptors
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The circumventricular structures and the lateral hypothalamus (LH) have been shown to be important for the central action of angiotensin II (ANGII) on water and electrolyte regulation. Several anatomical findings have demonstrated neural connection between circumventricular structures and the LH, the present experiments were conducted to investigate the role of the alpha-adrenergic antagonists and agonistic injected into the LH on the water intake, sodium and potassium excretion elicited by injections of ANGII into the lateral ventricle (LV), the water intake was measured every 30 min over a period of 120 min. The sodium, potassium and urinary volume were measured over a period of 120 min in water-loaded rats. The injection of ANGII into the LV increased the water intake, which was reduced by previous injection of clonidine (an alpha-2-adrenergic agonist) into the LH. The injection of yohimbine (an alpha-2-adrenergic antagonist) and prazosin (an alpha-l-adrenergic antagonist) into the LH, which was done before injecting ANGII into the LV, also reduced the water intake induced by ANGII. The injection of ANGII into the LV reduced the sodium, potassium and urinary volume. Previous treatment with clonidine attenuated the action of ANGII in reducing the sodium, potassium and urinary volume, whereas previous treatment with yohimbine attenuated the effects of ANGII but with less intensity than that caused by clonidine. Previous treatment with prazosin increased the inhibitory effects of ANGII in those parameters. The injection of yohimbine and prazosin, which was done before the injection of clonidine, attenuated the effect of clonidine on the ANGII mechanism. The results of this study led us to postulate that when alpha-2-adrenergic receptors are blocked, the clonidine may act on the imidazoline receptors to produce its effects on the ANGII mechanism. We may also conclude that the LH is involved with circumventricular structures, which present excitatory and inhibitory mechanisms. Such mechanisms are responsible for regulating the renal excretion of sodium, potassium and water, (C) 2000 Elsevier B.V.
Resumo:
Calcium channels mediate the actions of many drugs. The present work investigated whether diltiazem, an L-type calcium channel blocker, alters the inhibition of sodium appetite induced by noradrenaline and the alpha(2)-adrenoceptor agonist clonidine. Adult male Holtzman rats (N=4-8) with cannula implanted into the third cerebral ventricle were submitted to sodium depletion {furosemide sc+24-h removal of ambiente sodium). Sodium depleted control animals that received 0.9% NaCl as vehicle injected intracerebroventricularly (i.c.v) ingested 13.0+/-1.5 ml/120 min of 1.8% NaCl. Intracerebroventricular injection of either noradrenaline (80 nmol) or clonidine (20 nmol) inhibited 1.8% NaCl intake from 70 to 90%. Prior i.c.v. injection of diltiazem (6-48 nmol) inhibited from 50 to 100% the effect of noradrenaline and clonidine in a dose-response manner. Diltiazem alone at 100 nmol inhibited, but at 50 nmol had no effect on, sodium appetite. The results suggest: (1) common ionic mechanisms involving calcium channels for the inhibition that noradrenaline and clonidine exert on sodium appetite and (2) a dual role for the benzothiazepine site of L-type calcium channels in the control of sodium appetite. (C) 2002 Elsevier B.V. B V. All rights reserved.
Resumo:
In this study we investigated the influence of cu-adrenergic antagonists injections into the paraventricular nucleus (PVN) of the hypothalamus on the thirst and salt appetite, diuresis, natriuresis, and presser effects of angiotensin II (ANG II) stimulation of medial septal area (MSA). ANG II injection into the MSA induced water and sodium intake, diuresis, natriuresis, and presser responses. The previous injection of prazosin (an alpha (1)-adrenergic antagonist) into the PVN abolished, whereas previous administration of yohimbine (an alpha (2)-adrenergic antagonist) into the PVN increased the water and sodium intake, urinary, natriuretic, and presser responses induced by ANG ii injected into the MSA. Previous injection of a nonselective alpha -adrenergic antagonist, regitin, into the PVN blocked the urinary excretion, and reduced the water and sodium intake, sodium intake, and presser responses induced by ANG II injected into the MSA. The present results suggest that alpha -adrenergic pathways involving the PVN are important for the water and sodium excretion, urine and sodium excretion, and presser responses, induced by angiotensinergic activation of the MSA. (C) 2001 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Medial amygdaloid nucleus (MeA) neurotransmission has an inhibitory influence on cardiovascular responses in rats submitted to restraint, which are characterized by both elevated blood pressure (BP) and intense heart rate (HR) increase. In the present study, we investigated the involvement of MeA adrenoceptors in the modulation of cardiovascular responses that are observed during an acute restraint. Male Wistar rats received bilateral microinjections of the selective alpha 1-adrenoceptor antagonist WB4101 (10, 15, and 20 nmol/100 nL) or the selective alpha 2-adrenoceptor antagonist RX821002 (10, 15, and 20 nmol/nL) into the MeA, before the exposure to acute restraint. The injection of WB4101 reduced the restraint-evoked tachycardia. In contrast, the injection of RX821002 increased the tachycardia. Both drugs had no influence on BP increases observed during the acute restraint. Our findings indicate that alpha 1 and alpha 2-adrenoceptors in the MeA play different roles in the modulation of the HR increase evoked by restraint stress in rats. Results suggest that alpha 1-adrenoceptors and alpha 2-adrenoceptors mediate the MeA-related facilitatory and inhibitory influences on restraint-related HR responses, respectively. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The lateral septal area (LSA) is a limbic structure involved in autonomic, neuroendocrine and behavioural responses. An inhibitory influence of the LSA on baroreflex activity has been reported; however, the local neurotransmitter involved in this modulation is still unclear. In the present study, we verified the involvement of local LSA adrenoceptors in modulating cardiac baroreflex activity in unanaesthetized rats. Bilateral microinjection of the selective a1-adrenoceptor antagonist WB4101 (10 nmol in a volume of 100 nl) into the LSA decreased baroreflex bradycardia evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Nevertheless, bilateral administration of the selective a2-adrenoceptor antagonist RX821002 (10 nmol in 100 nl) increased baroreflex tachycardia without affecting reflex bradycardia. Treatment of the LSA with a cocktail containing WB4101 and RX821002 decreased baroreflex bradycardia and increased reflex tachycardia. The non-selective beta-adrenoceptor antagonist propranolol (10 nmol in 100 nl) did not affect either reflex bradycardia or tachycardia. Microinjection of noradrenaline into the LSA increased reflex bradycardia and decreased the baroreflex tachycardic response, an opposite effect compared with those observed after double blockade of a1- and a2-adrenoceptors, and this effect of noradrenaline was blocked by local LSA pretreatment with the cocktail containing WB4101 and RX821002. The present results provide advances in our understanding of the baroreflex neural circuitry. Taken together, data suggest that local LSA a1- and a2-adrenoceptors modulate baroreflex control of heart rate differently. Data indicate that LSA a1-adrenoceptors exert a facilitatory modulation on baroreflex bradycardia, whereas local a2-adrenoceptors exert an inhibitory modulation on reflex tachycardia.
Resumo:
In the present study we compared the effects produced by moxonidine (alpha(2)-adrenoceptor/imidazoline agonist) injected into the 4th cerebral ventricle and into the lateral cerebral ventricle on mean arterial pressure, heart rate and on renal, mesenteric and hindquarter vascular resistances, as well as the possible action of moxonidine on central alpha(1)- or alpha(2)-adrenoceptors to produce cardiovascular responses. Male Holtzman rats (n = 7-8) anesthetized with urethane (0.5 g/kg, intravenously - i.v.) and alpha-chloralose (60 mg/kg, i.v.) were used. Moxonidine (5, 10 and 20 nmol) injected into the 4th ventricle reduced arterial pressure (-19 +/- 5, -30 +/- 7 and -43 +/- 8 mmHg vs. vehicle: 2 +/- 4 mmHg), heart rate (-10 +/- 6, - 16 +/- 7 and -27 +/- 9 beats per minute - bpm, vs. vehicle: 4 +/- 5 bpm), and renal, mesenteric and hindquarter vascular resistances. Moxonidine (5, 10 and 20 nmol) into the lateral ventricle only reduced renal vascular resistance (-77 +/- 17%, - 85 +/- 13%, -89 +/- 10% vs. vehicle: 3 +/- 4%), without changes on arterial pressure, heart rate and mesenteric and hindquarter vascular resistances. Pre-treatment with the selective alpha(2)-adrenoceptor antagonist yohimbine (80, 160 and 320 nmol) injected into the 4th ventricle attenuated the hypotension (-32 +/- 5, -25 +/- 4 and -12 +/- 6 mmHg), bradycardia (-26 +/- 11, -23 +/- 5 and -11 +/- 6 bpm) and the reduction in renal, mesenteric and hindquarter vascular resistances produced by moxonidine (20 nmol) into the 4th ventricle. Pretreatment with yohimbine (320 nmol) into the lateral ventricle did not change the renal vasodilation produced by moxonidine (20 nmol) into the lateral ventricle. The alpha(1)-adrenoceptor antagonist prazosin (320 nmol) injected into the 4th ventricle did not affect the cardiovascular effects of moxonidine. However, prazosin (80, 160 and 320 nmol) into the lateral ventricle abolished the renal vasodilation (-17 +/- 4, -6 +/- 9 and 2 +/- 11%) produced by moxonidine. The results indicate that the decrease in renal vascular resistance due to moxonidine action in the forebrain is mediated by alpha(1)-adrenoceptors, while the cardiovascular effects produced by moxonidine acting in the brainstern depend at least partially on the activation of coadrenoceptors. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Very low doses (0.00001 mg/kg) of the alpha-2 adrenergic antagonist, yohimbine, improved working memory performance in a subset of aged monkeys. Improvement appeared to result from increased norepinephrine (NE) release onto postsynaptic alpha-2 adrenoceptors, as the response was blocked by the ''postsynaptic'' alpha-2 antagonist, SKF104078. Cognitive-enhancing effects of low dose yohimbine treatment may depend on aged animals retaining an intact, endogenous NE system. In contrast to yohimbine, the alpha-2 agonist, clonidine, has improved working memory in air aged animals examined. In the present study, clonidine's beneficial effects were also blocked by the postsynaptic antagonists SKF104078 and SKF104856, suggesting that clonidine acts by directly stimulating postsynaptic alpha-2 adrenoceptors. Beneficial doses of clonidine (0.01 mg/kg) and yohimbine (0.00001 mg/kg) were combined to see if they would produce additive effects on memory enhancement. This strategy was successful in young monkeys with intact NE systems but was not effective in the aged monkeys. These findings demonstrate that drugs that indirectly stimulate postsynaptic alpha-2 receptors by increasing NE release are not as reliable in aged monkeys as directly acting agonists that can replace NE at postsynaptic alpha-2 receptors.
Resumo:
Adenosine Is known to modulate neuronal activity within the nucleus tractus solitarius (NTS). The modulatory effect of adenosine A, receptors (A(1R)) on alpha(2)-adrenoceptors (Adr(2R)) was evaluated using quantitative radioautography within NTS subnuclei and using neuronal culture of normotensive (WKY) and spontaneously hypertensive rats (SHR). Radioautography was used in a saturation experiment to measure Adr2R binding parameters (B(max), K(d)) In the presence of 3 different concentrations of N(6)-cyclopentyladenosine (CPA), an A(1R) agonist. Neuronal culture confirmed our radioautographic results. [(3)H]RX821002, an Adr(2R) antagonist, was used as a ligand for both approaches. The dorsomedial/dorsolateral subnucleus of WKY showed an increase in B(max) values (21%) Induced by 10 nmol/L of CPA. However, the subpostremal subnucleus showed a decrease in Kd values (24%) induced by 10 nmol/L of CPA. SHR showed the same pattern of changes as WKY within the same subnuclei; however, the modulatory effect of CPA was induced by I nmol/L (increased B(max), 17%; decreased K(d), 26%). Cell culture confirmed these results, because 10(-5) and 10(-7) mol/L of CPA promoted an Increase in [3H]RX821002 binding of WKY (53%) and SHR cells (48%), respectively. DPCPX, an AIR antagonist, was used to block the modulatory effect promoted by CPA with respect to Adr2R binding. In conclusion, our study shows for the first time an interaction between A(1R) that increases the binding of Adr2R within specific subnuclei of the NTS. This may be important In understanding the complex autonomic response induced by adenosine within the NTS. In addition, changes in interactions between receptors might be relevant to understanding the development of hypertension. (Hypertens Res 2008; 31: 2177-2186)
Resumo:
We investigated the participation of central alpha(2)-adrenoceptors and imidazoline receptors in the inhibition of water deprivation-induced water intake in rats. The alpha(2)-adrenoceptor and imidazoline antagonist idazoxan (320 nmol), but not the alpha(2)-adrenoceptor antagonist yohimbine, abolished the antidipsogenic effect of moxonidine (alpha(2)-adrenoceptor and imidazoline agonist, 20 nmol) microinjected into the medial septal area. Yohimbine abolished the antidipsogenic effect of moxonidine intracerebroventricularly. Therefore, central moxonidine may inhibit water intake acting independently on both imidazoline receptors and alpha(2)-adrenoceptors at different forebrain sites.
Noradrenaline and mixed alpha(2)-adrenoceptor/imidazoline-receptor ligands: effects on sodium intake
Resumo:
The effect of noradrenaline, and mixed ligands to alpha(2)-adrenoceptors (alpha(2)-AR) and imidazoline receptors (IR), injected intracerebroventricularly (i.c.v.), on sodium intake of sodium depleted rats, was tested against idazoxan, a mixed antagonist ligand to alpha(2)-AR and IR. The inhibition of sodium intake induced by noradrenaline (80 nmol) was completely reversed by idazoxan (160 and 320 nmol) injected i.c.v. The inhibition of sodium intake induced by mixed ligands to alpha(2)-AR and IR, UK14,304, guanabenz and moxonidine, was antagonized from 50 to 60% by idazoxan i.c.v. The results demonstrate that noradrenaline, a non-ligand for IR, acts on alpha(2)-AR inhibiting sodium intake. The possibility that either alpha(2)-AR or IR mediate the effect of mixed agonists on sodium intake remains an open question. (C) 1999 Elsevier B.V. B.V. All rights reserved.