994 resultados para airway changes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the anatomical changes and stability of the oropharyngeal airway and head Posture following TMJ reconstruction and mandibular advancement with TMJ Concepts custom-made total joint prostheses and maxillary osteotomies with counter-clockwise rotation of the maxillo-mandibular complex. All patients were operated at Baylor University Medical Center, Dallas TX, USA, by one surgeon (Wolford). The lateral cephalograms of 47 patients were analyzed to determine surgical and post-surgical changes of the oropharyngeal airway, hyoid bone and head posture. Surgery increased the narrowest retroglossal airway space 4.9 mm. Head Posture showed flexure immediately after surgery (-5.6 +/- 6.7 degrees) and extension long-term post surgery (1.8 +/- 6.7 degrees); cervical curvature showed no significant change. Surgery increased the distances between the third cervical vertebrae and the menton 11.7 +/- 9.1 mm and the third cervical vertebrae and hyoid 3.2 +/- 3.9 mm, and remained stable. The distance from the hyoid to the mandibular plane decreased during surgery (-3.8 +/- 5.8 mm) and after surgery (-2.5 +/- 5.2 mm), Maxillo-mandibular advancement with counter-clockwise rotation and TMJ reconstruction with total joint prostheses produced immediate increase in oropharyngeal airway dimension, which was influenced by long-term changes in head posture but remained stable over the follow-up period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study evaluated oropharyngeal airway changes and stability following surgical counter-clockwise rotation and advancement of the maxillo-mandibular complex.Methods and Patients: Fifty-six adults (48 females, 8 males), between 15 and 51 years of age, were treated with Le Fort I osteotomies and bilateral mandibular ramus sagittal split osteotomies to advance the maxillo-mandibular complex with a counter-clockwise rotation. The average postsurgical follow-up was 34 months. Each patient's lateral cephalograms were traced, digitized twice, and averaged to estimate Surgical changes (T2-T1) and Postsurgical changes (T3-T2).Results: During surgery, the occlusal plane angle decreased significantly (8.6 +/- 5.8 degrees) and the maxillo-mandibular complex advanced and rotated counter-clock-wise. The maxilla moved forward (2.4 +/- 2.7 mm) at ANS and the mandible was advanced 13.1 +/- 5.1 min at menton, 10 +/- 4.4 mm at point B, and 6.9 +/- 3.7 mm at lower incisor edge. Postsurgical hard tissue changes were not statistically significant. While the upper oropharyngeal airway decreased significantly (4.2 +/- 3.4 min) immediately after surgery, the narrowest retropalatal, lowest retropalatal airway, and the narrowest retroglossal airway measurements increased 2.9 +/- 2.7, 3.7 +/- 3.2, and 4.4 +/- 4.4 mm, respectively. Over the average 34 months Postsurgical period, upper retropalatal airway increased 3.9 +/- 3.7 mm, while narrowest retropalatal, lowest retropalatal airway, and narrowest retroglossal airway remained stable. Head posture showed flexure immediately after Surgery (4.8 +/- 5.9 degrees) and extension postsurgically (1.6 +/- 5.6 degrees).Conclusion: Maxillo-mandibular advancement with counter-clockwise rotation produces immediate increases in middle and lower oropharyngeal airway dimensions, which were constrained by changes in head posture but remain stable over the postsurgical period. The upper oropharyngeal airway space increased only on the longest follow-up. (C) 2006 American Association of Oral and Maxillofacial Surgeons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study focused on three-dimensional (3D) airway space changes and stability following simultaneous maxillomandibular counterclockwise rotation, mandibular advancement, and temporomandibular joint (TMJ) reconstruction with custom-made total joint prostheses (TMJ Concepts®). Cone beam computed tomography (CBCT) scans of 30 consecutive female patients with irreversibly compromised TMJs were obtained at the following intervals: T1, presurgery; T2, immediately after surgery; and T3, at least 6 months after surgery. The CBCT volumetric datasets were analysed with Dolphin Imaging ® software to evaluate surgical and postsurgical changes to oropharyngeal airway parameters. The average changes in airway surface area (SA), volume (VOL), and minimum axial area (MAA) were, 179.50 mm2, 6302.60 mm3, and 92.23 mm2, respectively, at the longest follow-up (T3 - T1) (P ≤ 0.001). Significant correlations between the amount of mandibular advancement and counterclockwise rotation of the occlusal plane and 3D airway changes were also found (P ≤ 0.01). The results of this investigation showed a significant immediate 3D airway space increase after maxillomandibular counterclockwise rotation and mandibular advancement with TMJ Concepts total joint prostheses, which remained stable over the follow-up period. © 2013 International Association of Oral and Maxillofacial Surgeons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exhaled breath (EB) and exhaled breath condensate (EBC) contain numerous volatile gases and a wide-array of non-volatile compounds, several of which have been investigated as markers of lower airway inflammation in human and veterinary medicine and have been used to diagnose and monitor diseases associated with pulmonary inflammation. The identification of reliable biomarkers within EB and EBC is an active research focus with the common goal of establishing non-invasive and repeatable assessment of respiratory health and disease in mammals. The application of EB and EBC analysis holds considerable appeal in the investigation of respiratory disease in Thoroughbred racehorses, as inflammatory airway disease (IAD) is a common cause for poor performance in this population of animals. This study documented that EB and EBC samples can be safely collected from Thoroughbred racehorses in their own environment, without adverse effect or interference with the horse’s training regimen. The use of off-line collection and analysis of exhaled gases via chemiluminescence is suitable for the measurement of exhaled carbon monoxide, but is not appropriate for analyzing exhaled nitric oxide in horses. Significant changes in the concentration of exhaled CO and the pH of EBC occurred in response to strenuous exercise and when exercising in different environmental temperatures. Exhaled CO was associated with tracheal mucus score (and the number of neutrophils in the mucus) and EBC pH was significantly different in horses with evidence of neutrophilic IAD compared to horses without IAD. Numerous physiological and environmental variables were identified as confounding factors in the assessment of both exhaled CO and EBC pH, with respiratory rate prior to EB collection, and during EBC collection, consistently identified as an explanatory variable influencing the concentration of exhaled biomarkers. Further studies in EB and EBC analysis in horses need to focus on objectively accounting for key respiratory dynamics during sample collection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asthma is an incapacitating disease of the respiratory system, which causes extensive morbidity and mortality worldwide. Asthma affects more than 300 million people globally(Masoli et al. 2004). In Australia, it affects 10.2% of the population (Masoli et al. 2004) and causes 60,000 people to be hospitalised annually. Health care expenditure due to asthma in Australia was $606 million in 2004–2005. There are four primary biological factors that function in the initiation and exacerbation of asthma. Airway inflammation is important as it is often the first response to an airway insult, initiating the three other components: bronchoconstriction, mucus hyper-secretion and hyper-reactivity. The mediators involved in asthma are still not well understood, and current anti-inflammatory corticosteroid treatments are not effective with all asthmatics. As there is currently no cure for asthma, and airway inflammation is the primary component of the disease, it is important that we understand and investigate the mediators of airway inflammation to look for a potential cure and to produce better therapeutics to treat the inflammation. Trefoil factors (TFFs) and secretoglobins (SCGBs) are small secreted proteins involved in the mediation of inflammation and epithelial restitution. TFFs are pro-inflammatory and SCGBs anti-inflammatory by nature. The hypothesis of this study is that in response to induced acute airway inflammation, the expression of TFF1 and TFF3 will increase and expression of SCGB1A1 and SCGB3A2 will decrease in non-asthmatics (N-A), asthmatics medicating with bronchodilators (A-BD) and asthmatics medicating with corticosteroids (A-ST). When comparing the three groups, we expect to see higher expression of the TFFs in the A-BD group compared to the N-A and A-ST groups, indicating that inflammation is mediated by TFFs in asthma and that corticosteroid medication controls their expression as part of the control of inflammation. We expect to see the opposite with SCGBs, with a greater decrease in the A-BD group compared to the other two groups, suggesting that the A-BD group has the least anti-inflammatory activity in response to inflammatory insult. Epigenetic modification plays a role in the regulation of genes that initiate disease states such as inflammatory conditions and cancers. Histone acetylation is one such modification, which involves the acetylation of histones in chromatin by histone acetyltransferases (HATs). This increases the transcription of genes involved with inflammation or enrols histone deacetylases (HDACs) to down-regulate the transcription of inflammatory genes. These HATs and HDACs work in a homeostatic fashion; however, in the event of inflammation, increased HAT activity can stimulate further inflammation, which is believed to be the mechanism involved in some inflammatory diseases. This study hypothesises that in response to inflammation, the expression of HDACs (HDAC1-5) will decrease and the expression of HATs (NCOA1-3, HAT-1 and CREBBP) will increase in all groups. When comparing the expression between the groups, it was expected that a greater decrease in HDACs and a greater increase in HATs will be seen in the A-BD group compared to the other two groups. This would identify histone acetylation as a mechanism involved in the inflammatory condition of asthma and indicate that corticosteroids may treat the inflammation in asthma at least in part by controlling histone acetylation. The aim of the project was to compare the expression of inflammatory genes TFF1, TFF3, SCGB1A1 and SCGB3A2, as well as to compare the gene expression of HDAC1-5, NCOA1-3, HAT-1 and CREBBP within and between N-A (n=15), A-BD (n=15) and A-ST (n=15) groups in response to inflammation. This was performed by collecting airway cells and proteins by sputum induction in three sessions. The sessions were coordinated into an initial baseline collection (SI-1), followed by a second session at least one week later (SI-2) and a third session, six hours after SI-2 to collect a sample containing the resultant acute inflammation caused in SI-2 (SI-3). Analysis of the SI-1 and SI-2 samples in all three groups had high amounts of variability between samples. The samples were taken at least one weak apart and the environmental stimuli on each participant outside of the testing sessions could not be controlled. For this reason, the SI-1 samples were not used for analysis; instead SI-2 and SI-3 samples were compared as they were same-day collections, reducing the probability of differences being due to anything other than the sputum induction. The gene expressions of the TFFs, SCGBs, HDACs and HATs were analysed using real-time PCR. Western blot analysis was performed to analyse the protein concentrations of the TFFs and SCGBs in secreted fractions of the sputum collection. Both the secreted and intracellular protein fractions collected from the sputum inductions for pre- and post-inflammation (SI-2, SI-3) samples of the N-A and A-BD groups were analysed using a proteomic method called iTRAQ. This allowed the comparison of the change in protein expression as a result of airway inflammation in each group. This technique was used as a discovery method to identify novel proteins that are modulated by induced acute airway inflammation. Any proteins of interest would then be further validated and used for future research. Inflammation was achieved in the SI-3 samples of the N-A group with a 21% unit increase in % neutrophils compared to SI-2 (p=0.01). The N-A group had a marked 5.5-fold decrease in HDAC1 gene expression in SI-3 compared to SI-2 (p=0.03). No differences were seen in any of the TFFs, SCGBs or any of the rest of the HDACs and HATs. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. However, non-significant analysis of the data displayed increases in TFF1 and TFF3, and decreases in SCGB1A1 and SCGB3A2 for the majority of SI-3 samples compared to SI-2. The A-BD group also presented a marked increase in neutrophils in the SI-3 samples compared to SI-2 (27% unit increase, p=0.04). The A-BD group had a significant increase in TFF3 and SCGB1A1 gene expression concomitant with induced acute airway inflammation. A 7.3-fold increase in TFF3 (p=0.05) in SI-3 indicated that TFF3 is linked to inflammation in asthmatics. A 2.8-fold increase in SCGB1A1 (p=0.03) indicated that this gene is also up-regulated, suggesting that this SCGB is expressed to try to combat induced acute airway inflammation. No significant changes were seen in any of the other genes analysed. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. However, non-significant analysis of the data displayed an increase in TFF1 and TFF3, and a decrease in SCGB1A1 and SCGB3A2 in SI-3, similar to that seen in the N-A group. The A-ST group was different from the A-BD group, characterised by the use of inhaled corticosteroid medication to treat asthma symptoms. Inhaled corticosteroids are known to treat asthma symptoms through the control of inflammation. Therefore, it was expected that corticosteroid medication would also control the expression of TFFs, SCGBs, HATs and HDACs. Gene expression results only identified a 7.6-fold decrease in HDAC2 expression in SI-3 (p=0.001), which is proposed to be due to the up-regulation of HDAC2 protein that is known to be a function of corticosteroid use. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. The gene expression in SI-2 and SI-3 in each group was compared. When comparing the A-BD group to the N-A group, a 9-fold increase in TFF3 (p=0.008) and a 34-fold increase in SCGB1A1 (p=0.03) were seen in the SI-3 samples. Comparisons of the A-ST group to the N-A group had an increased expression in SI-2 samples for HDAC5 (3.6-fold, p=0.04), NCOA2 (8.5-fold, p=0.04), NCOA3 (17-fold, p=0.01), HAT-1 (36-fold, p=0.003) and CREBBP (13-fold, p=0.001). The SI-3 samples in the A-ST group compared to the N-A group had increased expression for HDAC1 (6.4-fold, p=0.04), HDAC5 (5.2-fold, p=0.008), NCOA2 (9.6-fold, p=0.03), NCOA3 (16-fold, p=0.06), HAT-1 (41-fold, p<0.001) and CREBBP (31-fold, p=0.001). Comparisons of the A-ST group to the A-BD group had SI-2 increases in HDAC1 (3.8-fold, p=0.03), NCOA3 (4.5-fold, p=0.03), HAT-1 (5.3-fold, p=0.01) and CREBBP (23-fold, p=0.001), while SI-3 comparisons saw a decrease in HDAC2 (41-fold, p=0.008) and increases in HAT-1 (4.3-fold, p=0.003) and CREBBP (40-fold, p=0.001). Results showed that TFF3 and SCGB1A1 expression is higher in asthmatics than non-asthmatics and that histone acetylation is more active in the A-ST group than either the N-A or A-BD group, which suggests that histone acetylation activity may be positively correlated with asthma severity. The iTRAQ proteomic analysis of the secreted protein samples identified the SCGB1A1 protein and found it to be decreased in both the N-A and A-BD groups post-inflammation, but significantly so only in the A-BD group. Although no significant results were obtained from the western blot data, both groups displayed a decrease in SCGB1A1 concentration in SI-3 samples, suggesting a correlation with the proteomic data. Only 31 peptides were identified from the secreted samples. The intracellular iTRAQ analysis successfully identified 664 peptides, eight of which had differential expression in association with induced acute airway inflammation. Significant increases were seen in the A-BD group in SI-3 compared to SI-2 than in the N-A group in chloride intracellular channel protein 1, keratin-19, eosinophil cationic protein, calnexin, peroxiredoxin-5, and ATP-synthase delta subunit, while decreases were seen in cystatin-A and mucin-5AC. The iTRAQ analysis was only a discovery measure and further validation must be performed. In summary, the expression of TFFs and SCGBs differed between non-asthmatics and asthmatics. It is clear that TFF3 is active in the airway inflammation associated with asthma as indicated by an increase associated with inflammation in the A-BD group compared to the N-A group. Results for HDAC and HAT genes showed high HAT expression in the A-ST group compared to the N-A and A-BD groups, suggesting that histone acetyltransferases may be responsible for the characteristic unregulated inflammatory symptoms of asthmatics taking corticosteroids. Interestingly, corticosteroid medication did not seem to silence the expression of the analysed HAT genes, which indicates that corticosteroids may not control inflammation by direct regulation of HATs, but instead by competition, most probably with HDAC2 protein. As a discovery tool, iTRAQ is a potent method to both identify and compare the concentration of proteins between samples. The method is a powerful first step into the identification of novel proteins that are regulated in response to different treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of these studies was to evaluate possible airway inflammation and remodeling at the bronchial level in cross-country skiers without a prior diagnosis of asthma, and relate the findings to patients with mild chronic asthma and patients with newly diagnosed asthma. We also studied the association of airway inflammatory changes and bronchial hyperresponsivess (BHR), and treatment effects in cross-country skiers and in patients with newly diagnosed asthma. Bronchial biopsies were obtained from the subjects by flexible bronchoscopy, and the inflammatory cells (eosinophils, mast cells, T-lymphocytes, macrophages, and neutrophils) were identified by immunohistochemistry. Tenascin (Tn) immunoreactivity in the bronchial basement membrane (BM) was identified by immunofluorescence staining. Lung function was measured with spirometry, and BHR was assessed by methacholine (skiers) or histamine (asthmatics) challenges. Skiers with BHR and asthma-like symptoms were recruited to a drug-intervention study. Skiers were given treatment (22 weeks) with placebo or budesonide (400 µg bid). Patients with newly diagnosed asthma were given treatment for 16 weeks with placebo, salmeterol (SLM) (50 µg bid), fluticasone propionate (FP) (250 µg bid), or disodium cromoglicate (DSCG) (5 mg qid). Bronchial biopsies were obtained at baseline and at the end of the treatment period. In the skiers a distinct airway inflammation was evident. In their bronchial biopsy specimens, T-lymphocyte, macrophage, and eosinophil counts were, respectively greater by 43-fold (P<0.001), 26-fold (P<0.001, and 2-fold (P<0.001) in skiers, and by 70-fold (p>0.001), 63-fold (P<0.001), and 8-fold (P<0.001) in asthmatic subjects than in controls. In skiers, neutrophil counts were more than 2-fold greater than in asthmatic subjects (P<0.05). Tn expression was higher in skiers than in controls and lower in skiers than in mild asthmatics. No significant changes were seen between skiers with or without BHR in the inflammatory cell counts or Tn expression. Treatment with inhaled budesonide did not attenuate asthma-like symptoms, the inflammatory cell infiltration, or BM Tn expression in the skiers. In newly diagnosed asthmatic patients, SLM, FP, and DSCG reduced asthma symptoms, and need for rescue medication (P<0.04). BHR was reduced by doubling doses 2.78, 5.22, and 1.35 respectively (all P<0.05). SLM and placebo had no effect on cell counts or Tn expression. FP and DSCG reduced eosinophil counts in the bronchial biopsy specimens (P<0.02 and <0.048, respectively). No significant change in tenascin expression appeared in any treatment group. Regarding to atopy, no significant differences existed in the inflammatory cell counts in the bronchial mucosa of subjects with newly diagnosed asthma or in elite cross country skiers. Tn expression in the BM was significantly higher in atopic asthma than in those with nonatopic asthma. Airway inflammation occurred in elite cross-country skiers with and without respiratory symptoms or BHR. Their inflammatory cell pattern differed from that in asthma. Infiltration with eosinophils, macrophages, and mast cells was milder, but lymphocyte counts did not differ from counts in asthmatic airways. Neutrophilic infiltration was more extensive in skiers than in asthmatics. Remodeling took place in the skiers’ airways, as reflected by increased expression of BM tenascin These inflammatory changes and Tn expression may be caused by prolonged exposure of the lower airways to inadequately humidified cold air. In skiers inflammatory changes and remodeling were not reversed with anti-inflammatory treatment. In contrast, in patients with newly diagnosed asthma, anti-inflammatory treatment did attenuate eosinophilic inflammation in the bronchial mucosa. In skiers, anti-inflammatory treatment did not attenuate BHR as it did in asthmatic patients. The BHR in skiers was attenuated spontaneously during placebo treatment, with no difference from budesonide treatment. Lower training intensity during the treatment period may explain this spontaneous decrease in BHR. The origin of BHR probably differs in skiers and in asthmatics. No significant association between BHR and inflammatory cell counts or between BHR and Tn expression was evident in cross-country skiers or asthmatic subjects. Airway remodeling differed between atopic and nonatopic asthma. As opposed to nonatopic asthma, Tn expression was higher in atopic asthma and is related to inflammatory cell densities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asthma is a chronic inflammatory disorder of the airways. Remodelling in asthma is defined as the structural changes seen in the airways of asthmatics in comparison to healthy controls. Progressive loss of lung function also seen in asthma might be caused by remodelling. The research aims of this thesis were to investigate inflammation and remodelling in the airways of different types of asthmatics and smokers. The association between inflammation and remodelling was also examined in a mouse model of allergic airway inflammation. Healthy smokers showed increased numbers of macrophages in the BAL with no changes in the inflammatory cells in biopsies. Macrophages seemed to be quite quiescent, since mRNA expression for a wide variety of inflammatory mediators, especially chemokines CCL3, CCL4, CCL5 and CCL20, secreted by macrophages was significantly lower than in healthy non-smokers. Attenuated macrophage activity in the airway lumen may render smokers more susceptible to airway infections and have an impact on the development of other airway pathology. Patients with diisocyanate-induced asthma (DIA) on inhaled corticosteroids (ICS) who still had non-specific bronchial hyperreactivity (NSBHR) at the end of the follow-up showed increased expression of TNF-α, IL-6 and IL-15 mRNA in BAL cells compared to those without NSBHR. In addition to being markers for poor prognosis and possible slight glucocorticoid resistance, these cytokines might aid in guiding the treatment of DIA. The increase in the thickness of tenascin-C layer in the bronchial basement membrane (BM) was much less than usually seen in other types of asthma, which might not make tenascin-C a good marker for DIA. OVA-induced tenascin-C expression in the lung was attenuated in STAT4-/- mice with impaired Th1-type immunity compared to WT mice. Interestingly, STAT6-/- mice with impaired Th2-type immunity showed tenascin-C expression levels similar to those of WT mice. The clearest difference between these two knockout strains in response to OVA was that STAT4-/- mice exhibited no upregulation of IFN-γ and TNF-α mRNA expression. Thus, tenascin-C expression was unexpectedly more related to Th1 type reactions. In vitro studies confirmed the results. Human fibroblasts stimulated by TNF-α and IFN-γ showed increased expression of tenascin-C. Patients with newly diagnosed asthma showed increased expression of laminin α2 in the bronchial BM in comparison to patients with asthma symptoms only and healthy controls. Both patients with asthma and those with only asthma symptoms showed increased expression of the laminin β2 chain in comparison to controls. Thus, laminin α2 expression differentiated patients with clinical asthma from patients with symptoms only. Furthermore, the expression of laminin α2 and β2 was associated with NSBHR, linking very specific remodelling events to clinical findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The small airways of the human lung undergo pathological changes in pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, bronchiolitis obliterans and cystic fibrosis. These clinical problems impose huge personal and societal healthcare burdens. The changes, termed 'pathological airway remodeling', affect the epithelium, the underlying mesenchyme and the reciprocal trophic interactions that occur between these tissues. Most of the normal human airway is lined by a pseudostratified epithelium of ciliated cells, secretory cells and 6-30% basal cells, the proportion of which varies along the proximal-distal axis. Epithelial abnormalities range from hypoplasia (failure to differentiate) to basal- and goblet-cell hyperplasia, squamous- and goblet-cell metaplasia, dysplasia and malignant transformation. Mesenchymal alterations include thickening of the basal lamina, smooth muscle hyperplasia, fibrosis and inflammatory cell accumulation. Paradoxically, given the prevalence and importance of airway remodeling in lung disease, its etiology is poorly understood. This is due, in part, to a lack of basic knowledge of the mechanisms that regulate the differentiation, maintenance and repair of the airway epithelium. Specifically, little is known about the proliferation and differentiation of basal cells, a multipotent stem cell population of the pseudostratified airway epithelium. This Perspective summarizes what we know, and what we need to know, about airway basal cells to evaluate their contributions to normal and abnormal airway remodeling. We contend that exploiting well-described model systems using both human airway epithelial cells and the pseudostratified epithelium of the genetically tractable mouse trachea will enable crucial discoveries regarding the pathogenesis of airway disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Childhood asthma is characterized by inflammation of the airways. Structural changes of the airway wall may also be seen in some children early in the course of the disease. Matrix metalloproteinases (MMPs) are key mediators in the metabolism of the extracellular matrix (ECM). Objective To investigate the balance of MMP-8, MMP-9 and tissue inhibitor of metalloproteinases (TIMP)-1 in the airways of children with asthma. Methods One hundred and twenty-four children undergoing elective surgical procedures also underwent non-bronchoscopic bronchoalveolar lavage (BAL). MMP-8, MMP-9 and TIMP-1 were measured by ELISA. Results There was a significant reduction in MMP-9 in atopic asthmatic children (n=31) compared with normal children (n=30) [median difference: 0.57 ng/mL (95% confidence interval: 0.18–1.1 ng/mL)]. The ratio of MMP-9 to TIMP-1 was also reduced in asthmatic children. Levels of all three proteins were significantly correlated to each other and to the relative proportions of particular inflammatory cells in BAL fluid (BALF). Both MMP-8 and MMP-9 were moderately strongly correlated to the percentage neutrophil count (r=0.40 and 0.47, respectively, P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of HeLa cells and serum- and glucocorticoid-regulated kinase 1 (SGK1) knockout mice identified threonine residues in the n-myc downstream-regulated gene 1 protein (NDRG1-Thr(346/356/366)) that are phosphorylated by SGK1 but not by related kinases (Murray et al., Biochem J 385:1-12, 2005). We have, therefore, monitored the phosphorylation of NDRG1-Thr(346/356/366) in order to explore the changes in SGK1 activity associated with the induction and regulation of the glucocorticoid-dependent Na+ conductance (G (Na)) in human airway epithelial cells. Transient expression of active (SGK1-S422D) and inactive (SGK1-K127A) SGK1 mutants confirmed that activating SGK1 stimulates NDRG1-Thr(346/356/366) phosphorylation. Although G (Na) is negligible in hormone-deprived cells, these cells displayed basal SGK1 activity that was sensitive to LY294002, an inhibitor of 3-phosphatidylinositol phosphate kinase (PI3K). Dexamethasone (0.2 mu M) acutely activated SGK1 and the peak of this response (2-3 h) coincided with the induction of G (Na), and both responses were PI3K-dependent. While these data suggest that SGK1 might mediate the rise in G (Na), transient expression of the inactive SGK1-K127A mutant did not affect the hormonal induction of G (Na) but did suppress the activation of SGK1. Dexamethasone-treated cells grown on permeable supports formed confluent epithelial sheets that generated short circuit current due to electrogenic Na+ absorption. Forskolin and insulin both stimulated this current and the response to insulin, but not forskolin, was LY294002-sensitive and associated with the activation of SGK1. While these data suggest that SGK1 is involved in the control of G (Na), its role may be minor, which could explain why sgk1 knockout has different effects upon different tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is characterized by defective mucociliary clearance and chronic airway infection by a complex microbiota. Infection, persistent inflammation and periodic episodes of acute pulmonary exacerbation contribute to an irreversible decline in CF lung function. While the factors leading to acute exacerbations are poorly understood, antibiotic treatment can temporarily resolve pulmonary symptoms and partially restore lung function. Previous studies indicated that exacerbations may be associated with changes in microbial densities and the acquisition of new microbial species. Given the complexity of the CF microbiota, we applied massively parallel pyrosequencing to identify changes in airway microbial community structure in 23 adult CF patients during acute pulmonary exacerbation, after antibiotic treatment and during periods of stable disease. Over 350,000 sequences were generated, representing nearly 170 distinct microbial taxa. Approximately 60% of sequences obtained were from the recognized CF pathogens Pseudomonas and Burkholderia, which were detected in largely non-overlapping patient subsets. In contrast, other taxa including Prevotella, Streptococcus, Rothia and Veillonella were abundant in nearly all patient samples. Although antibiotic treatment was associated with a small decrease in species richness, there was minimal change in overall microbial community structure. Furthermore, microbial community composition was highly similar in patients during an exacerbation and when clinically stable, suggesting that exacerbations may represent intrapulmonary spread of infection rather than a change in microbial community composition. Mouthwash samples, obtained from a subset of patients, showed a nearly identical distribution of taxa as expectorated sputum, indicating that aspiration may contribute to colonization of the lower airways. Finally, we observed a strong correlation between low species richness and poor lung function. Taken together, these results indicate that the adult CF lung microbiome is largely stable through periods of exacerbation and antibiotic treatment and that short-term compositional changes in the airway microbiota do not account for CF pulmonary exacerbations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE: The role bacteria play in the progression of COPD has increasingly been highlighted in recent years. However, the microbial community complexity in the lower airways of patients with COPD is poorly characterised.

OBJECTIVES: To compare the lower airway microbiota in patients with COPD, smokers and non-smokers.

METHODS: Bronchial wash samples from adults with COPD (n=18), smokers with no airways disease (n=8) and healthy individuals (n=11) were analysed by extended-culture and culture-independent Illumina MiSeq sequencing. We determined aerobic and anaerobic microbiota load and evaluated differences in bacteria associated with the three cohorts. Culture-independent analysis was used to determine differences in microbiota between comparison groups including taxonomic richness, diversity, relative abundance, 'core' microbiota and co-occurrence.

MEASUREMENT AND MAIN RESULTS: Extended-culture showed no difference in total load of aerobic and anaerobic bacteria between the three cohorts. Culture-independent analysis revealed that the prevalence of members of Pseudomonas spp. was greater in the lower airways of patients with COPD; however, the majority of the sequence reads for this taxa were attributed to three patients. Furthermore, members of Bacteroidetes, such as Prevotella spp., were observed to be greater in the 'healthy' comparison groups. Community diversity (α and β) was significantly less in COPD compared with healthy groups. Co-occurrence of bacterial taxa and the observation of a putative 'core' community within the lower airways were also observed.

CONCLUSIONS: Microbial community composition in the lower airways of patients with COPD is significantly different to that found in smokers and non-smokers, indicating that a component of the disease is associated with changes in microbiological status.