939 resultados para air flow dynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data centre is a centralized repository,either physical or virtual,for the storage,management and dissemination of data and information organized around a particular body and nerve centre of the present IT revolution.Data centre are expected to serve uniinterruptedly round the year enabling them to perform their functions,it consumes enormous energy in the present scenario.Tremendous growth in the demand from IT Industry made it customary to develop newer technologies for the better operation of data centre.Energy conservation activities in data centre mainly concentrate on the air conditioning system since it is the major mechanical sub-system which consumes considerable share of the total power consumption of the data centre.The data centre energy matrix is best represented by power utilization efficiency(PUE),which is defined as the ratio of the total facility power to the IT equipment power.Its value will be greater than one and a large value of PUE indicates that the sub-systems draw more power from the facility and the performance of the data will be poor from the stand point of energy conservation. PUE values of 1.4 to 1.6 are acievable by proper design and management techniques.Optimizing the air conditioning systems brings enormous opportunity in bringing down the PUE value.The air conditioning system can be optimized by two approaches namely,thermal management and air flow management.thermal management systems are now introduced by some companies but they are highly sophisticated and costly and do not catch much attention in the thumb rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally, models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models, geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using particle image velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of NOX emissions by exhaust gas recirculation (EGR) is of widespread application. However, despite dramatic improvements in all aspects of engine control, the subtle mixing processes that determine the cylinder-to-cylinder distribution of the recirculated gas often results in a mal-distribution that is still an issue for the engine designer and calibrator. In this paper we demonstrate the application of a relatively straightforward technique for the measurement of the absolute and relative dilution quantity in both steady state and transient operation. This was achieved by the use of oxygen sensors based on standard UEGO (universal exhaust gas oxygen) sensors but packaged so as to give good frequency response (∼ 10 ms time constant) and be completely insensitivity to the sample pressure and temperature. Measurements can be made at almost any location of interest, for example exhaust and inlet manifolds as well as EGR path(s), with virtually no flow disturbance. At the same time, the measurements yield insights into air-path dynamics. We argue that "dilution", as indicated by the deviation of the oxygen concentration from that of air, is a more appropriate parameter than EGR rate in the context of NOX control, especially for diesel engines. Experimental results are presented for the EGR distribution in a current production light duty 4-cylinder diesel engine in which significant differences were found in the proportion of the recirculated gas that reached each cylinder. Even the individual inlet runners of the cylinders exhibited very different dilution rates - differences of nearly 50% were observed at some conditions. An application of such data may be in the improvement of calibration and validation of CFD and other modelling techniques. Copyright © 2014 SAE International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work identifies the importance of plenum pressure on the performance of the data centre. The present methodology followed in the industry considers the pressure drop across the tile as a dependant variable, but it is shown in this work that this is the only one independent variable that is responsible for the entire flow dynamics in the data centre, and any design or assessment procedure must consider the pressure difference across the tile as the primary independent variable. This concept is further explained by the studies on the effect of dampers on the flow characteristics. The dampers have found to introduce an additional pressure drop there by reducing the effective pressure drop across the tile. The effect of damper is to change the flow both in quantitative and qualitative aspects. But the effect of damper on the flow in the quantitative aspect is only considered while using the damper as an aid for capacity control. Results from the present study suggest that the use of dampers must be avoided in data centre and well designed tiles which give required flow rates must be used in the appropriate locations. In the present study the effect of hot air recirculation is studied with suitable assumptions. It identifies that, the pressure drop across the tile is a dominant parameter which governs the recirculation. The rack suction pressure of the hardware along with the pressure drop across the tile determines the point of recirculation in the cold aisle. The positioning of hardware in the racks play an important role in controlling the recirculation point. The present study is thus helpful in the design of data centre air flow, based on the theory of jets. The air flow can be modelled both quantitatively and qualitatively based on the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the prediction of velocity fields on the 2415-3S airfoil which will be used for an unmanned aerial vehicle with internal propulsion system and in this way analyze the air flow through an internal duct of the airfoil using computational fluid dynamics. The main objective is to evaluate the effect of the internal air flow past the airfoil and how this affects the aerodynamic performance by means of lift and drag forces. For this purpose, three different designs of the internal duct were studied; starting from the base 2415-3S airfoil developed in previous investigation, basing on the hypothesis of decreasing the flow separation produced when the propulsive airflow merges the external flow, and in this way obtaining the best configuration. For that purpose, an exhaustive study of the mesh sensitivity was performed. It was used a non-structured mesh since the computational domain is three-dimensional and complex. The selected mesh contains approximately 12.5 million elements. Both the computational domain and the numerical solution were made with commercial CAD and CFD software, respectively. Air, incompressible and steady was analyzed. The boundary conditions are in concordance with experimental setup in the AF 6109 wind tunnel. The k-e model is utilized to describe the turbulent flow process as followed in references. Results allowed obtaining velocity contours as well as lift and drag coefficients and also the location of separation and reattachment regions in some cases for zero degrees of angle of attack on the internal and external surfaces of the airfoil. Finally, the selection of the configuration with the best aerodynamic performance was made, selecting the option without curved baffles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the prediction of pressure and velocity fields on the 2415-3S airfoil which will be used for and unmanned aerial vehicle with internal propulsion system and in this way analyze the air flow through an internal duct of the airfoil using computational fluid dynamics. The main objective is to evaluate the effect of the internal air flow past the airfoil and how this affects the aerodynamic performance by means of lift and drag forces. For this purpose, three different designs of the internal duct were studied; starting from the base 2415-3S airfoil developed in previous investigation, basing on the hypothesis of decreasing the flow separation produced when the propulsive airflow merges the external flow, and in this way obtaining the best configuration. For that purpose, an exhaustive study of the mesh sensitivity was performed. It was used a non-structured mesh since the computational domain is tridimensional and complex. The selected mesh contains approximately 12.5 million elements. Both the computational domain and the numerical solution were made with commercial CAD and CFD software respectively. Air, incompressible and steady was analyzed. The boundary conditions are in concordance with experimental setup in the AF 6109 wind tunnel. The k-ε model is utilized to describe the turbulent flow process as followed in references. Results allowed obtaining pressure and velocity contours as well as lift and drag coefficients and also the location of separation and reattachment regions in some cases for zero degrees of angle of attack on the internal and external surfaces of the airfoil. Finally, the selection of the configuration with the best aerodynamic performance was made, selecting the option without curved baffles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical investigation is carried out for natural convection heat transfer in an isosceles triangular enclosure partitioned in the centre by a vertical wall with infinite conductivity. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. As a result, heat is transferred between both sides of the enclosure through the conducting vertical wall with natural convection boundary layers forming adjacent to the middle partition and two inclined surfaces. The Finite Volume based software, Ansys 14.5 (Fluent) is used for the numerical simulations. The numerical results are obtained for different values of aspect ratio, A (0.2, 0.5 and 1.0) and Rayleigh number, Ra (10^5 <= Ra <= 10^8) for a fixed Prandtl number, Pr = 0.72 of air. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes several distinct stages including an initial stage, a transitional stage and a steady stage. Time dependent features of the coupled thermal boundary layers as well as the overall natural convection flow in the partitioned enclosure have been discussed in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As more raw sugar factories become involved in the manufacture of by-products and cogeneration, bagasse is becoming an increasingly valuable commodity. However, in most factories, most of the bagasse produced is used to generate steam in relatively old and inefficient boilers. Efficient bagasse fired boilers are a high capital cost item and the cost of supplying the steam required to run a sugar factory by other means is prohibitive. For many factories a more realistic way to reduce bagasse consumption is to increase the efficiency of existing boilers. The Farleigh No. 3 boiler is a relatively old low efficiency boiler. Like many in the industry, the performance of this boiler has been adversely affected by uneven gas and air flow distributions and air heater leaks. The combustion performance and efficiency of this boiler have been significantly improved by making the gas and air flow distributions through the boiler more uniform and repairing the air heater. The estimated bagasse savings easily justify the cost of the boiler improvements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the analytical model coupling the convective boundary layer (CBL) with the free atmosphere developed by Qi and Fu (1992) is improved. And by this improved model, the interaction between airflow over a mountain and the CBL is further discussed. The conclusions demonstrate: (1) The perturbation potential temperatures in the free atmosphere can counteract the effect of orographic thermal forcing through entraining and mixing in the CBL. If u(M)BAR > u(F)BAR, the feedback of the perturbation potential temperatures in the free atmosphere is more important than orographic thermal forcing, which promotes the effect of interfacial waves. If u(M)BAR < u(F)BAR, orographic thermal forcing is more important, which makes the interfacial height and the topographic height identical in phase, and the horizontal speeds are a maximum at the top of the mountain. (2) The internal gravity waves propagating vertically in the free atmosphere cause a strong downslope wind to become established above the lee slope in the CBL and result in the hydraulic jump at the top of the CBL. (3) With the CBL deepening, the interfacial gravity waves induced by the potential temperature jump at the top of the CBL cause the airflow in the CBL to be subcritical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air flow at the land-sea-air interface influences to a large extent the atmospheric conditions that determine the transport, di lution, and trapping of natural and man-made air pollutants in the coastal areas of Monterey Bay and the Salinas Valley. Analysis of the hourly air flow on a daily and monthly basis indicates patterns of stagnation from midnight to noon of the fol lowing day with moderate to strong air flow during period 1300 to 2200. Throughout the year 1971 whenever flow is greater than 5 mph, the prevailing wind direction is onshore and from a westerly direction. Suggestions for urbanization and industrialization are made on the basis of an understanding of the atmospheric conditions which lead to trapping and dispersal of atmospheric waste. (27 page document)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes an experimental and theoretical study of the deposition of small spherical particles from a turbulent air flow in a curved duct. The objective was to investigate the interaction between the streamline curvature of the primary flow and the turbulent deposition mechanisms of diffusion and turbophoresis. The experiments were conducted with particles of uranine (used as a fluorescent tracer) produced by an aerosol generator. The particles were entrained in an air flow which passed vertically downwards through a long straight channel of rectangular cross-section leading to a 90° bend. The inside surfaces of the channel and bend were covered with tape to collect the deposited particles. Following a test run the tape was removed in sections, the uranine was dissolved in sodium hydroxide solution and the deposition rates established by measuring the uranine concentration with a luminescence spectrometer. The experimental results were compared with calculations of particle deposition in a curved duct using a computer program that solved the ensemble-averaged particle mass and momentum conservation equations. A particle density-weighted averaging procedure was used and the equations were expressed in terms of the particle convective, rather than total, velocity. This approach provided a simpler formulation of the particle turbulence correlations generated by the averaging process. The computer program was used to investigate the distance required to achieve a fully-developed particle flow in the straight entry channel as well as the variation of the deposition rate around the bend. The simulations showed good agreement with the experimental results. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A boundary integral technique has been developed for the numerical simulation of the air flow for the Aaberg exhaust system. For the steady, ideal, irrotational air flow induced by a jet, the air velocity is an analytical function. The solution of the problem is formulated in the form of a boundary integral equation by seeking the solution of a mixed boundary-value problem of an analytical function based on the Riemann-Hilbert technique. The boundary integral equation is numerically solved by converting it into a system of linear algebraic equations, which are solved by the process of the Gaussian elimination. The air velocity vector at any point in the solution domain is then computed from the air velocity on the boundary of the solution domains.