908 resultados para agua caliente sanitaria
Resumo:
Se condujo un experimento durante el período de mayo a octubre de 1995, en las instalaciones del Centro Experimental del Café del Norte. (CECN- UNICAFE), Matagalpa -Nicaragua, con el objetivo de evaluar a nivel de semilleros de café (Cojfea arabica L.), dos métodos fisicos de desinfección de suelo (solarización y agua caliente), seis productos químicos desinfectantes de suelo, de los cuales cuatro son fungicidas (PCNB, clorotalonil, óxido de cobre y carboxin + captan), dos biocidas (dazornet y metarn sodio) y un testigo sin aplicación, establecidos en dos tipos de substratos (suelo y arena), para prevenir ataques de Rhizoctonia solani Külm. Los tratamientos fueron arreglados en bloques con cinco repeticiones donde se evaluaron las variables emergencia, incidencia e índice de severidad de la enfermedad y fitotoxicidad. El análisis de varianza (P = 0.05) no detectó diferencias significativas para estas variables excepto para la emergencia en substrato suelo siendo los mejores tratamientos agua caliente, dazomet y testigo según Tukey al 5 %. Se detectaron diferencias significativas en la interacción substrato * tratamiento para la variable emergencia; sin embargo Tukey al 5 % no detecta diferencias significativas. Se encontró diferencias significativas entre substratos, presentándose el mayor número de plántulas emergidas y los menores índices de incidencia y severidad de la enfermedad en los semilleros establecidos en substrato suelo (P = 0.05). El análisis económico de presupuesto parcial demostró que los tratamientos que presentaron el menor costo variable y mayor ingreso neto fueron el testigo seguido del óxido de cobre en ambos sustratos, donde el análisis de dominancia demuestra que el testigo domina a los demás tratamientos
Resumo:
An experimental apparatus containing a domestic refrigerator coupled to a vertical hot water storage tank was used for energy recovery. The original condenser of the refrigerator was maintained, but modified with a concentric tubes heat exchanger with countercurrent water and refrigerating gas flows. The coefficient of performance for the heat pump is calculated by the ratio of energy in the heat storage and the electric power consumed by the domestic refrigerator compressor. The results show that the increasing of hydrostatic pressure in the storage tank increases the water flow rate and the coefficient of performance. The proposed device also reduces the heat dissipation to the surroundings. This is more important in small confinements found in low-cost houses.
Resumo:
With U. S. Congress. House. Committee on Indian affairs. Palm Springs band of mission Indians. Hearings ... 1937.
Resumo:
Fondo Margaritainés Restrepo
Resumo:
Proyecto de Actualización Cartográfica de usos de la Tierra a escala 1:10.000 GAM de Costa Rica. Elaboración de Cartografía digital y Ortofotos.
Resumo:
[ES]Comparativa de las alternativas disponibles para la construcción de un edificio, con el objetivo de optimizar el diseño disminuyendo las pérdidas de energía. De los distintos tipos de construcciones posibles, la investigación se centra en una vivienda unifamiliar. El trabajo aborda, por una parte, el diseño de la envolvente de la vivienda con las técnicas eficientes y los materiales mejor ajustados a la zona de edificación; y por otra, la selección del sistema de calefacción y de agua caliente sanitaria (ACS). Se opta por bloques de tierra comprimida, aislante de celulosa y enlucido de arcilla para las paredes, así como por una caldera de pellets para el sistema de calefacción y una instalación de energía solar térmica para el ACS.
Resumo:
[ES]El presente trabajo consiste en el análisis exergético de una planta experimental con microcogeneración diseñada para satisfacer la demanda de agua caliente sanitaria de un bloque de viviendas. El ACS la generan una caldera con producción de energía térmica variable y una unidad de microcogneración que produce 5 kW eléctricos y 12 kW térmicos. El análisis exergético que se realiza en el trabajo permite determinar la eficiencia del uso que se hace del combustible, y compararla con la de una planta convencional.
Resumo:
[ES]Mediante este trabajo se tiene como objetivo la obtención de la calificación energética de la vivienda de Ekaitz Roldán, así como un análisis de posibles mejoras. Para obtener la certificación se usará la herramienta informática CE3X, que se vale de métodos simplificados para conseguirla. Se estudiarán diversos caminos para mejorar el resultado obtenido, existiendo predilección por la actuación sobre las instalaciones térmicas, principalmente sobre la caldera. Mejoras sobre la arquitectura de la casa no se contemplan en principio por ser una casa de relativamente nueva construcción. Se ha obtenido una calificación final de 28,7 (E), y sustituyendo el equipo de agua caliente sanitaria y calefacción por uno que use biomasa como combustible se ha logrado mejorar a 1,3 (A).
Resumo:
[ES]Este trabajo consiste en el análisis y dimensionamiento de una planta de biomasa que utiliza cardo procedente de cultivo energético para la generación de 3 MWe y la energía térmica suficiente para garantizar ACS (agua caliente sanitaria) y calefacción, mediante un sistema de district heating, a unos pocos miles de habitantes.
Resumo:
Resumen basado en el de la publicación
Resumo:
El alcance del proyecto es describir las directrices técnicas, la definición de criterios, y la estrategia de suministro de energía (Electricidad. Calefacción y Agua Caliente Sanitaria (ACS)) a un barrio modelo situado en un entorno urbano. De inicio se estudia los diversos modelos energéticos atendiendo a la normativa y tecnología, que se pueden aplicar en un conjunto residencial, dando como resultado el modelo propuesto de abastecimiento energético, mediante calefacción de distrito, que incorporara el diseño de una planta de producción de energía termo-eléctrica o Central de Energías basada en la tecnología de condensación de baja temperatura para calefacción y A.C.S. incluyendo una cogeneración con pila de combustible. Al mismo tiempo se han calculado y diseñado una serie de chimeneas externas para dar cumplida necesidad técnica y legal al proyecto. Estos estudios nos sirven de punto de partida para analizar la amortización de la inversión y por tanto la rentabilidad y viabilidad del proyecto, comparándose con los costes económicos derivados de la generación por sistemas convencionales. Para finalizar se hace mención a las ventajas medioambientales y a los grados de seguridad en la planta de producción ABSTRACT The scope of this work is the description of an energy supply project ( Electricity, heat and hot water ) to a housing development in a urban neibourhood , including technical criteria in their different options. Initially, several solutions are studied based on available technologies and legal restrictions. The final proposal is based on the district hearing model including electricity production in cogeneration via fuel cell technology as well as heating and hot water produced by low temperature condensation boilers It includes calculations and design criteria of the exhaust gases system and chimeneys in compliance with legal requirement in urban areas. This work also includes an economical model including payback, IRR and VAN analysis and an economical comparaison with the standard solutions. Finally, environmental advantages of the preferred solution over other standards as well as safety issues are also presented.
Resumo:
El objetivo del presente proyecto es el diseño de una vivienda unifamiliar de manera que el aporte de energía no renovable sea el mínimo para conseguir las condiciones de confort óptimas para los ocupantes durante todo el año. Para su diseño se tendrá en cuenta el aporte de energía solar pasiva y el uso de aislantes térmicos a lo largo de la envolvente para la reducción de las necesidades de energía. Se dimensiona una instalación geotérmica para el abastecimiento de calefacción, refrigeración y agua caliente sanitaria (ACS). En este dimensionamiento se incluyen los sondeos geotérmicos, el equipo de bomba de calor y la instalación de suelo radiante. En el estudio de iluminación se analizan las necesidades de alumbrado de la vivienda utilizando luminarias led. Por último se evalúa la viabilidad económica que supone sustituir una instalación de caldera de gasoil por la instalación geotérmica dimensionada y la viabilidad de sustituir luminarias incandescentes por luminarias led. ABSTRACT The purpose of this paper is the design of a single family home with the lowest nonrenewable energy input, so optimum comfort living conditions for the occupants during the whole year can be reached. In order to design the house, both passive solar energy input and the use of thermal insulators will be taken into account. A geothermal installation for the heating, cooling and Domestic Hot Water (DHC) supply will be measured. In this measuring, the boreholls, the heat pump equipment and the radiant floor heating installation are included. In the study of illumination of the house, the lighting needs using LED luminaires are analised. Finally, the economic viability when replacing the installation of a diesel boiler for the measured geothermal installation is assessed, as well as the viability when replacing incandescent luminaires for LED luminaires
Resumo:
En este escrito se pretende llevar a cabo la realización de un proyecto técnico sobre eficiencia energética en edificios. El proyecto comienza con el estudio de la demanda térmica de un edificio, es decir, de sus necesidades de calefacción, refrigeración y agua caliente sanitaria (ACS). Una vez realizado este análisis, se procede al estudio de distintas alternativas para la disminución del coste asociado al consumo energético del edificio, las cuales son: mejora del aislamiento de la envolvente térmica del edificio, instalación de colectores solares para la producción de ACS y el cambio de los quemadores de las calderas. De estas medidas se han presupuestado aquellas que poseen un bajo periodo de retorno de la inversión, y se ha desarrollado su planificación, programación temporal y análisis económico. ABSTRACT In this document is pretended to be carry out the performance of a technical project about energy efficiency in buildings. The project begins with the study of the thermal demand of the building, that is to say, the heating, cooling and domestic hot water (DHW) needs. Once the analysis has been done, is proceeded the study of different alternatives for diminishing the cost associate to the building energy consumption, which are: improvement of the insulation of the building, solar collector installation to produce DHW and change of the burner of the boilers. Among this measures, has been budgeted the ones that possess a low invest pay-back, and it is been developed their planning, their temporal programming and their economic analysis.
Resumo:
Esta tesis pretende contribuir al fomento y utilización de la energía solar como alternativa para la producción de agua caliente en el sector agroindustrial. La demanda de agua caliente es un aspecto clave en un gran número de agroindustrias y explotaciones agrarias. Esta demanda presenta una gran variabilidad, tanto en los horarios en que se solicita como en la temperatura del agua del depósito requerida (TADr), difiriendo del perfil de demanda habitual para uso doméstico. Existe una necesidad de profundizar en la influencia que tiene la variación de la TADr en la eficiencia y viabilidad de estos sistemas. El objetivo principal de esta tesis es caracterizar el funcionamiento de un sistema solar térmico (SST) con captador de tubos de vacío (CTV) para producir agua a temperaturas superiores a las habituales en estos sistemas. Se pretende determinar la influencia que la TADr tiene sobre la eficiencia energética del sistema, cuantificar el volumen de agua caliente que es capaz de suministrar en función de la TADr y determinar la rentabilidad del SST como sistema complementario de suministro. Para ello, se ha diseñado, instalado y puesto a punto un sistema experimental de calentamiento de agua, monitorizando su funcionamiento a diferentes TADr bajo condiciones ambientales reales. Los resultados cuantifican cómo el aumento de la TADr provoca una disminución de la energía suministrada al depósito, pudiendo superar diferencias de 1000 Wh m-2 d-1 entre 40 ºC y 80 ºC, para valores de irradiación solar próximos a 8000 Wh m-2 d-1 (la eficiencia del sistema oscila entre 73% y 56%). Esta reducción es consecuencia de la disminución de la eficiencia del captador y del aumento de las pérdidas de calor en las tuberías del circuito. En cuanto al agua suministrada, cuanto mayor es la TADr, mayor es la irradiación solar requerida para que tenga lugar la primera descarga de agua, aumentando el tiempo entre descargas y disminuyendo el número de éstas a lo largo del día. A medida que se incrementa la TADr, se produce una reducción del volumen de agua suministrado a la TADr, por factores como la pérdida de eficiencia del captador, las pérdidas en las tuberías, la energía acumulada en el agua que no alcanza la TADr y la mayor energía extraída del sistema en el agua producida. Para una TADr de 80 ºC, una parte importante de la energía permanece acumulada en el depósito sin alcanzar la TADr al final del día. Para aprovechar esta energía sería necesario disponer de un sistema complementario de suministro, ya que las pérdidas de calor nocturnas en el depósito pueden reducir considerablemente la energía útil disponible al día siguiente. La utilización del sistema solar como sistema único de suministro es inviable en la mayoría de los casos, especialmente a TADr elevadas, al no ajustarse la demanda de agua caliente a la estacionalidad de la producción del sistema solar, y al existir muchos días sin producción de agua caliente por la ausencia de irradiación mínima. Por el contrario, la inversión del sistema solar como sistema complementario para suministrar parte de la demanda térmica de una instalación es altamente recomendable. La energía útil anual del sistema solar estimada oscila entre 1322 kWh m-2 y 1084 kWh m-2. La mayor rentabilidad se obtendría suponiendo la existencia de una caldera eléctrica, donde la inversión se recuperaría en pocos años -entre 5.7 años a 40 ºC y 7.2 años a 80 ºC -. La rentabilidad también es elevada suponiendo la existencia de una caldera de gasóleo, con periodos de recuperación inferiores a 10 años. En una industria ficticia con demanda de 100 kWh d-1 y caldera de gasóleo existente, la inversión en una instalación solar optimizada sería rentable a cualquier TADr, con valores de VAN cercanos a la inversión realizada -12000 € a 80 ºC y 15000€ a 40 ºC- y un plazo de recuperación de la inversión entre 8 y 10 años. Los resultados de este estudio pueden ser de gran utilidad a la hora de determinar la viabilidad de utilización de sistemas similares para suministrar la demanda de agua caliente de agroindustrias y explotaciones agropecuarias, o para otras aplicaciones en las que se demande agua a temperaturas distintas de la habitual en uso doméstico (60 ºC). En cada caso, los rendimientos y la rentabilidad vendrán determinados por la irradiación de la zona, la temperatura del agua requerida y la curva de demanda de los procesos específicos. ABSTRACT The aim of this thesis is to contribute to the development and use of solar energy as an alternative for producing hot water in the agribusiness sector. Hot water supply is a key issue for a great many agribusinesses and agricultural holdings. Both hot water demand times and required tank water temperature (rTWT) are highly variable, where the demand profile tends to differ from domestic use. Further research is needed on how differences in rTWT influence the performance and feasibility of these systems. The main objective of this thesis is to characterize the performance and test the feasibility of an evacuated tube collector (ETC) solar water heating (SWH) system providing water at a higher temperature than is usual for such systems. The aim is to determine what influence the rTWT has on the system’s energy efficiency, quantify the volume of hot water that the system is capable of supplying at the respective rTWT and establish whether SWH is feasible as a booster supply system for the different analysed rTWTs. To do this, a prototype water heating system has been designed, installed and commissioned and its performance monitored at different rTWTs under real operating conditions. The quantitative results show that a higher rTWT results in a lower energy supply to the tank, where the differences may be greater than 1000 Wh m-2 d-1 from 40 ºC to 80 ºC for insolation values of around 8000 Wh m-2 d-1 (system efficiency ranges from 73% to 56%). The drop in supply is due to lower collector efficiency and greater heat losses from the pipe system. As regards water supplied at the rTWT, the insolation required for the first withdrawal of water to take place is greater at higher rTWTs, where the time between withdrawals increases and the number of withdrawals decreases throughout the day. As rTWT increases, the volume of water supplied at the rTWT decreases due to factors such as lower collector efficiency, pipe system heat losses, energy stored in the water at below the rTWT and more energy being extracted from the system by water heating. For a rTWT of 80 ºC, much of the energy is stored in the tank at below the rTWT at the end of the day. A booster supply system would be required to take advantage of this energy, as overnight tank heat losses may significantly reduce the usable energy available on the following day. It is often not feasible to use the solar system as a single supply system, especially at high rTWTs, as, unlike the supply from the solar heating system which does not produce hot water on many days of the year because insolation is below the required minimum, hot water demand is not seasonal. On the other hand, investment in a solar system as a booster system to meet part of a plant’s heat energy demand is highly recommended. The solar system’s estimated annual usable energy ranges from 1322 kWh m-2 to 1084 kWh m-2. Cost efficiency would be greatest if there were an existing electric boiler, where the payback period would be just a few years —from 5.7 years at 40 ºC to 7.2 years at 80 ºC—. Cost efficiency is also high if there is an existing diesel boiler with payback periods of under 10 years. In a fictitious industry with a demand of 100 kWh day-1 and an existing diesel boiler, the investment in the solar plant would be highly recommended at any rTWT, with a net present value similar to investment costs —12000 € at 80 ºC and 15000 € at 40 ºC— and a payback period of 10 years. The results of this study are potentially very useful for determining the feasibility of using similar systems for meeting the hot water demand of agribusinesses and arable and livestock farms or for other applications demanding water at temperatures not typical of domestic demand (60ºC). Performance and cost efficiency will be determined by the regional insolation, the required water temperature and the demand curve of the specific processes in each case.
Resumo:
Abastecimiento de Agua Potable para la parroquia Checa información general; lugar geográfico, geología, crecimiento de la comunidad, levantamiento topográfico, análisis de aguas y tratamiento de la misma, análisis poblacional, consumo y demanda de agua en la zona, obras de captación, aducción, conducción, distribución y el cálculo de la red por el Método de Hardy Cross, finalmente tenemos desinfección, tanque de reserva y el diseño del acueducto sobre la Quebrada Dispan