938 resultados para agricultural residues


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agroindustrial by-products and residues from treatment of sewage sludge have been recently recycled as soil amendments. This study was aimed at assessing toxic potential of biosolid, obtained from a sewage treatment plant (STP), vinasse, a by-product of the sugar cane industry, and a combination of both residues using Allium cepa assay. Bioprocessing of these samples by a terrestrial invertebrate (diplopod Rhinocricus padbergi) was also examined. Bioassay assembly followed standards of the Brazilian legislation for disposal of these residues. After adding residues, 20 diplopods were placed in each terrarium, where they remained for 30 days. Chemical analysis and the A. cepa assay were conducted before and after bioprocessing by diplopods. At the end of the bioassay, there was a decrease in arsenic and mercury. For the remaining metals, accumulation and/or bioavailability varied in all samples but suggested bioprocessing by animals. The A. cepa test revealed genotoxic effects characterized by different chromosome aberrations. Micronuclei and chromosome breaks on meristematic cells and F1 cells with micronuclei were examined to assess mutagenicity of samples. After 30 days, the genotoxic effects were significantly reduced in the soil + biosolid and soil + biosolid + vinasse groups as well as the mutagenic effects in the soil + biosolid + vinasse group. Similar to vermicomposting, bioprocessing of residues by diplopods can be a feasible alternative and used prior to application in crops to improve degraded soils and/or city dumps. Based on our findings, further studies are needed to adequately dispose of these residues in the environment. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years the production of products derived from wood and bamboo are increasing, due to the search for a more rational exploitation of these raw materials. Amongst these products, the particleboards production combine sustainability and rationality in the use of these materials. In this context, this work has the objective to study the application of alternative raw materials in the manufacture of Medium Density Particleboards (MDP), using residues from industrial processimg of coffee and bamboo. MDP had been produced with particles of giganteus bamboo of the Dendrocalamus species and particle of coffee rind in the intermediate layer of the particleboard, bonded with polyurethane resin based on castor oil. The physical and mechanical characterization was carried out accordingly to NBR 14810-3 (2006). The physical properties evaluated were: of water absorption for 2h and 24h; thickness swallowing for 2h and 24h; density, humidity content. The mechanical properties evaluated were: Tensile strength, static bending (MOR and MOE). The results were compared with NBR 14810-2 (2006) and also with the ANSI A208-1 (1993). The physical performance of these particleboards was below the values recommend by the Brazilian norm. Also the mechanical characteristics are not improve, demonstrating that the inclusion of coffee rind did not benefit the physical characteristics and nor the mechanical ones. However it can be used as construction materials for partitions and ceiling panels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years the production of products derived from wood and bamboo are increasing, due to the search for a more rational exploitation of these raw materials. Amongst these products, the particleboards production combine sustainability and rationality in the use of these materials. In this context, this work has the objective to study the application of alternative raw materials in the manufacture of Medium Density Particleboards (MDP), using residues from industrial processimg of coffee and bamboo. MDP had been produced with particles of giganteus bamboo of the Dendrocalamus species and particle of coffee rind in the intermediate layer of the particleboard, bonded with polyurethane resin based on castor oil. The physical and mechanical characterization was carried out accordingly to NBR 14810-3 (2006). The physical properties evaluated were: of water absorption for 2h and 24h; thickness swallowing for 2h and 24h; density, humidity content. The mechanical properties evaluated were: Tensile strength, static bending (MOR and MOE). The results were compared with NBR 14810-2 (2006) and also with the ANSI A208-1 (1993). The physical performance of these particleboards was below the values recommend by the Brazilian norm. Also the mechanical characteristics are not improve, demonstrating that the inclusion of coffee rind did not benefit the physical characteristics and nor the mechanical ones. However it can be used as construction materials for partitions and ceiling panels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural residues from Thailand, namely stalk and rhizome of cassava plants, were employed as raw materials for bio-oil production via fast pyrolysis technology. There were two main objectives of this project. The first one was to determine the optimum pyrolysis temperature for maximising the organics yield and to investigate the properties of the bio-oils produced. To achieve this objective, pyrolysis experiments were conducted using a bench-scale (150 g/h) reactor system, followed by bio-oil analysis. It was found that the reactor bed temperature that could give the highest organics yield for both materials was 490±15ºC. At all temperatures studied, the rhizome gave about 2-4% higher organics yields than the stalk. The bio-oil derived from the rhizome had lower oxygen content, higher calorific value and better stability, thus indicating better quality than that produced from the stalk. The second objective was to improve the bio-oil properties in terms of heating value, viscosity and storage stability by the incorporation of catalyst into the pyrolysis process. Catalytic pyrolysis was initially performed in a micro-scale reactor to screen a large number of catalysts. Subsequently, seven catalysts were selected for experiments with larger-scale (150 g/h) pyrolysis unit. The catalysts were zeolite and related materials (ZSM-5, Al-MCM-41 and Al-MSU-F), commercial catalysts (Criterion-534 and MI-575), copper chromite and ash. Additionally, the combination of two catalysts in series was investigated. These were Criterion-534/ZSM-5 and Al-MSU-F/ZSM-5. The results showed that all catalysts could improve the bio-oils properties as they enhanced cracking and deoxygenation reactions and in some cases such as ZSM-5, Criterion-534 and Criterion-534/ZSM-5, valuable chemicals like hydrocarbons and light phenols were produced. The highest concentration of these compounds was obtained with Criterion-534/ZSM-5.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sorghum is the fifth most important cereal worldwide and is a major source of agricultural residues in tropical regions. Bioconversion of whole sorghum crop residues comprising stalks, leaves, peduncles and panicles to ethanol has great potential for improving ethanol yield per sorghum crop cultivated, and for sustainable biofuel production. Effective pretreatment of sorghum lignocellulosic biomass is central to the efficiency of subsequent fermentation to ethanol. Previous studies have focused on bioconversion of sorghum stalks and/or leaves only to bioethanol, but the current study is the first report dealing with whole crop residues. We specifically focused on the impact of Nigerian sorghum cultivation location and cultivar type on the potential ethanol yield from whole sorghum crop residues. Efficient bioconversion of whole sorghum residues to ethanol provides a sustainable route for utilisation of crop residues thereby providing a non-food feedstock for industrial scale bioethanol production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lignocellulosic materials, such as sugar cane bagasse, a waste product of the sugarcane processing industry, agricultural residues and herbaceous crops, may serve as an abundant and comparatively cheap feedstock for largescale industrial fermentation, resulting in the production of marketable end-products. However, the complex structure of lignocellulosic materials, the presence of various hexose and pentose sugars in the hemicellulose component, and the presence of various compounds that inhibit the organisms selected for the fermentation process, all constitute barriers that add to the production costs and make full scale industrial production economically less feasible. The work presented in this thesis was conducted in order to screen microorganisms for ability to utilize pentose sugars derived from the sugar mill industrial waste. A large number of individual bacterial strains were investigated from hemi-cellulose rich material collected at the Proserpine and Maryborough sugar mills, notably soil samples from the mill sites. The research conducted to isolation of six pentose-capable Gram-positive organisms from the actinomycetes group by using pentose as a sole carbon source in the cultivation process. The isolates were identified as Corynebacterium glutamicum, Actinomyces odontolyticus, Nocardia elegans, and Propionibacterium freudenreichii all of which were isolated from the hemicellulose-enriched soil. Pentose degrading microbes are very rare in the environment, so this was a significant discovery. Previous research indicated that microbes could degrade pentose after genetic modification but the microbes discovered in this research were able to naturally utilize pentose. Six isolates, identified as four different genera, were investigated for their ability to utilize single sugars as substrates (glucose, xylose, arabinose or ribose), and also dual sugars as substrates (a hexose plus a pentose). The results demonstrated that C. glutamicum, A. odontolyticus, N. elegans, and P. freudenreichii were pentose-capable (able to grow using xylose or other pentose sugar), and also showed diauxie growth characteristics during the dual-sugar (glucose, in combination with xylose, arabinose or ribose) carbon source tests. In addition, it was shown that the isolates displayed very small differences in growth rates when grown on dual sugars as compared to single sugars, whether pentose or hexose in nature. The anabolic characteristics of C. glutamicum, A. odontolyticus, N. elegans and P. freudenreichii were subsequently investigated by qualitative analysis of their end-products, using high performance liquid chromatography (HPLC). All of the organisms produced arginine and cysteine after utilization of the pentose substrates alone. In addition, P. freudenreichii produced alanine and glycine. The end-product profile arising from culture with dual carbon sources was also tested. Interestingly, this time the product was different. All of them produced the amino acid glycine, when grown on a combination substrate-mix of glucose with xylose, and also glucose with arabinose. Only N. elegans was able to break down ribose, either singly or in combination with glucose, and the end-product of metabolism of the glucose plus ribose substrate combination was glutamic acid. The ecological analysis of microbial abundance in sugar mill waste was performed using denaturing gradient gel electrophoresis (DGGE) and also the metagenomic microarray PhyloChip method. Eleven solid samples and seven liquid samples were investigated. A very complex bacterial ecosystem was demonstrated in the seven liquid samples after testing with the PhyloChip method. It was also shown that bagasse leachate was the most different, compared to all of the other samples, by virtue of its richness in variety of taxa and the complexity of its bacterial community. The bacterial community in solid samples from Proserpine, Mackay and Maryborough sugar mills showed huge diversity. The information found from 16S rDNA sequencing results was that the bacterial genera Brevibacillus, Rhodospirillaceae, Bacillus, Vibrio and Pseudomonas were present in greatest abundance. In addition, Corynebacterium was also found in the soil samples. The metagenomic studies of the sugar mill samples demonstrate two important outcomes: firstly that the bagasse leachate, as potentially the most pentose-rich sample tested, had the most complex and diverse bacterial community; and secondly that the pentose-capable isolates that were initially discovered at the beginning of this study, were not amongst the most abundant taxonomic groups discovered in the sugar mill samples, and in fact were, as suspected, very rare. As a bioprospecting exercise, therefore, the study has discovered organisms that are naturally present, but in very small numbers, in the appropriate natural environment. This has implications for the industrial application of E-PUB, in that a seeding process using a starter culture will be necessary for industrial purposes, rather than simply assuming that natural fermentation might occur.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis investigated the impact of organic sources of nutrients on greenhouse gas emissions (carbon dioxide, nitrous oxide and methane), nitrogen use efficiency and biomass production in subtropical cropping soils. The study was conducted in two main soil types in subtropical ecosystems, sandy loam soil and clay soil, with a variety of organic materials from agro-industrial residues and crop residues. It is important for recycling of agro-industrial residues and agricultural residues and the mitigation of greenhouse gas emissions and nitrogen use efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

280 p. : il.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O uso de polímeros e de compósitos biodegradáveis se apresenta como uma solução para o problema gerado pelo descarte de grandes quantidades de resíduos plásticos no ambiente. Os polímeros convencionais, além de não biodegradáveis, tem como fonte um material não-renovável, o petróleo. Os polímeros biodegradáveis, produzidos a partir de materiais renováveis, frequentemente apresentam como desvantagem o alto custo e propriedades nem sempre satisfatórias. Neste contexto, os compósitos poliméricos se apresentam como uma alternativa, pela possibilidade de incorporar cargas, tanto de origem vegetal como mineral, para alterar propriedades, adequando-as à finalidade do material. Além disso, para viabilizá-los economicamente, há o uso de cargas de baixo custo, como resíduos agrícolas. Neste estudo foram elaborados compósitos de poli(adipato-co-tereftalato de butileno) e amido (ECOBRAS) com palha de milho, em diferentes concentrações. Foi utilizada a palha de milho in natura, resíduo agrícola abundante, como forma de reduzir os custos e aumentar a proporção de produtos naturais usados, considerando que o ECOBRAS já possui amido em sua composição. O ensaio de tração e análises de DSC, TGA, FTIR, MO e MEV foram utilizadas para caracterizar e avaliar as propriedades dos compósitos. A matriz polimérica e os compósitos foram submetidos ao ensaio de biodegradabilidade através do enterro em solo simulado, segundo a norma ASTM G 160-03, por períodos variando de 2 a 15 semanas. Após cada período de enterro, foram determinadas a perda de massa e a morfologia dos corpos de prova e foram realizadas análises de TGA e FTIR. Os compósitos apresentaram menor resistência à tração que a matriz polimérica. No ensaio de biodegradabilidade, todos os compósitos foram considerados biodegradáveis, embora o acréscimo de palha tenha aumentado o tempo de degradação

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fuel-only algal systems are not economically feasible because yields are too low and costs too high for producing microalgal biomass compared to using agricultural residues e.g. straw. Biorefineries which integrate biomass conversion processes and equipment to produce fuels, power and chemicals from biomass, offer a solution. The CO2 microalgae biorefinery (D-Factory) is a 10 million Euro FP7-funded project which will cultivate the microalga Dunaliella in highly saline non-potable waters in photobioreactors and open raceways and apply biorefinery concepts and European innovations in biomass processing technologies to develop a basket of compounds from Dunaliella biomass, including the high value nutraceutical, β-carotene, and glycerol. Glycerol now finds markets both as a green chemical intermediate and as a biofuel in CHP applications as a result of novel combustion technology. Driving down costs by recovering the entire biomass of Dunaliella cells from saline cultivation water poses one of the many challenges for the D-Factory because Dunaliella cells are both motile, and do not possess an external cell wall, making them highly susceptible to cell rupture. Controlling expression of desired metabolic pathways to deliver the desired portfolio of compounds flexibly and sustainably to meet market demand is another. The first prototype D-Factory in Europe will be operational in 48 months, and will serve as a robust manifestation of the business case for global investment in algae biorefineries and in large-scale production of microalgae.