915 resultados para adaptive system
Resumo:
The application process of fluid fertilizers through variable rates implemented by classical techniques with feedback and conventional equipments can be inefficient or unstable. This paper proposes an open-loop control system based on artificial neural network of the type multilayer perceptron for the identification and control of the fertilizer flow rate. The network training is made by the algorithm of Levenberg-Marquardt with training data obtained from measurements. Preliminary results indicate a fast, stable and low cost control system for precision fanning. Copyright (C) 2000 IFAC.
Resumo:
An adaptive scheme is shown by the authors of the above paper (ibid. vol. 71, no. 2, pp. 275-276, Feb. 1983) for continuous time model reference adaptive systems (MRAS), where relays replace the usual multipliers in the existing MRAS. The commenter shows an error in the analysis of the hyperstability of the scheme, such that the validity of this configuration becomes an open question.
Resumo:
Las redes del futuro, incluyendo las redes de próxima generación, tienen entre sus objetivos de diseño el control sobre el consumo de energía y la conectividad de la red. Estos objetivos cobran especial relevancia cuando hablamos de redes con capacidades limitadas, como es el caso de las redes de sensores inalámbricos (WSN por sus siglas en inglés). Estas redes se caracterizan por estar formadas por dispositivos de baja o muy baja capacidad de proceso y por depender de baterías para su alimentación. Por tanto la optimización de la energía consumida se hace muy importante. Son muchas las propuestas que se han realizado para optimizar el consumo de energía en este tipo de redes. Quizás las más conocidas son las que se basan en la planificación coordinada de periodos de actividad e inactividad, siendo una de las formas más eficaces para extender el tiempo de vida de las baterías. La propuesta que se presenta en este trabajo se basa en el control de la conectividad mediante una aproximación probabilística. La idea subyacente es que se puede esperar que una red mantenga la conectividad si todos sus nodos tienen al menos un número determinado de vecinos. Empleando algún mecanismo que mantenga ese número, se espera que se pueda mantener la conectividad con un consumo energético menor que si se empleara una potencia de transmisión fija que garantizara una conectividad similar. Para que el mecanismo sea eficiente debe tener la menor huella posible en los dispositivos donde se vaya a emplear. Por eso se propone el uso de un sistema auto-adaptativo basado en control mediante lógica borrosa. En este trabajo se ha diseñado e implementado el sistema descrito, y se ha probado en un despliegue real confirmando que efectivamente existen configuraciones posibles que permiten mantener la conectividad ahorrando energía con respecto al uso de una potencia de transmisión fija. ABSTRACT. Among the design goals for future networks, including next generation networks, we can find the energy consumption and the connectivity. These two goals are of special relevance when dealing with constrained networks. That is the case of Wireless Sensors Networks (WSN). These networks consist of devices with low or very low processing capabilities. They also depend on batteries for their operation. Thus energy optimization becomes a very important issue. Several proposals have been made for optimizing the energy consumption in this kind of networks. Perhaps the best known are those based on the coordinated planning of active and sleep intervals. They are indeed one of the most effective ways to extend the lifetime of the batteries. The proposal presented in this work uses a probabilistic approach to control the connectivity of a network. The underlying idea is that it is highly probable that the network will have a good connectivity if all the nodes have a minimum number of neighbors. By using some mechanism to reach that number, we hope that we can preserve the connectivity with a lower energy consumption compared to the required one if a fixed transmission power is used to achieve a similar connectivity. The mechanism must have the smallest footprint possible on the devices being used in order to be efficient. Therefore a fuzzy control based self-adaptive system is proposed. This work includes the design and implementation of the described system. It also has been validated in a real scenario deployment. We have obtained results supporting that there exist configurations where it is possible to get a good connectivity saving energy when compared to the use of a fixed transmission power for a similar connectivity.
Resumo:
We numerically investigate the combination of full-field detection and feed-forward equalizer (FFE) for adaptive chromatic dispersion compensation up to 2160 km in a 10 Gbit/s on-off keyed optical transmission system. The technique, with respect to earlier reports, incorporates several important implementation modules, including the algorithm for adaptive equalization of the gain imbalance between the two receiver chains, compensation of phase misalignment of the asymmetric Mach-Zehnder interferometer, and simplified implementation of field calculation. We also show that in addition to enabling fast adaptation and simplification of field calculation, full-field FFE exhibits enhanced tolerance to the sampling phase misalignment and reduced sampling rate when compared to the full-field implementation using a dispersive transmission line.
Resumo:
Self-adaptation is emerging as an increasingly important capability for many applications, particularly those deployed in dynamically changing environments, such as ecosystem monitoring and disaster management. One key challenge posed by Dynamically Adaptive Systems (DASs) is the need to handle changes to the requirements and corresponding behavior of a DAS in response to varying environmental conditions. Berry et al. previously identified four levels of RE that should be performed for a DAS. In this paper, we propose the Levels of RE for Modeling that reify the original levels to describe RE modeling work done by DAS developers. Specifically, we identify four types of developers: the system developer, the adaptation scenario developer, the adaptation infrastructure developer, and the DAS research community. Each level corresponds to the work of a different type of developer to construct goal model(s) specifying their requirements. We then leverage the Levels of RE for Modeling to propose two complementary processes for performing RE for a DAS. We describe our experiences with applying this approach to GridStix, an adaptive flood warning system, deployed to monitor the River Ribble in Yorkshire, England.
Resumo:
Self-adaptive systems have the capability to autonomously modify their behaviour at run-time in response to changes in their environment. Such systems are now commonly built in domains as diverse as enterprise computing, automotive control systems, and environmental monitoring systems. To date, however, there has been limited attention paid to how to engineer requirements for such systems. As a result, selfadaptivity is often constructed in an ad-hoc manner. In this paper, we argue that a more rigorous treatment of requirements relating to self-adaptivity is needed and that, in particular, requirements languages for self-adaptive systems should include explicit constructs for specifying and dealing with the uncertainty inherent in self-adaptive systems. We present some initial thoughts on a new requirements language for selfadaptive systems and illustrate it using examples from the services domain. © 2008 IEEE.
Resumo:
Dynamically adaptive systems (DASs) are intended to monitor the execution environment and then dynamically adapt their behavior in response to changing environmental conditions. The uncertainty of the execution environment is a major motivation for dynamic adaptation; it is impossible to know at development time all of the possible combinations of environmental conditions that will be encountered. To date, the work performed in requirements engineering for a DAS includes requirements monitoring and reasoning about the correctness of adaptations, where the DAS requirements are assumed to exist. This paper introduces a goal-based modeling approach to develop the requirements for a DAS, while explicitly factoring uncertainty into the process and resulting requirements. We introduce a variation of threat modeling to identify sources of uncertainty and demonstrate how the RELAX specification language can be used to specify more flexible requirements within a goal model to handle the uncertainty. © 2009 Springer Berlin Heidelberg.
Resumo:
We numerically investigate the combination of full-field detection and feed-forward equalizer (FFE) for adaptive chromatic dispersion compensation up to 2160 km in a 10 Gbit/s on-off keyed optical transmission system. The technique, with respect to earlier reports, incorporates several important implementation modules, including the algorithm for adaptive equalization of the gain imbalance between the two receiver chains, compensation of phase misalignment of the asymmetric Mach-Zehnder interferometer, and simplified implementation of field calculation. We also show that in addition to enabling fast adaptation and simplification of field calculation, full-field FFE exhibits enhanced tolerance to the sampling phase misalignment and reduced sampling rate when compared to the full-field implementation using a dispersive transmission line.
Resumo:
La teoría de la complejidad, propia del estudio de fenómenos relativos a las ciencias naturales, se muestra como un marco alternativo para comprender los eventos emergentes que surgen en el sistema internacional. Esta monografía correlaciona el lenguaje de la complejidad con las relaciones internacionales, enfocándose en la relación Visegrad—Ucrania, ya que ha sido escenario de una serie de eventos emergentes e inesperados desde las protestas civiles de noviembre de 2013 en Kiev. El sistema complejo que existe entre el Grupo Visegrad y Ucrania se ve , desde entonces, en la necesidad de adaptarse ante los recurrentes eventos emergentes y de auto organizarse. De ese modo, podrá comportarse en concordancia con escenarios impredecibles, particularmente en lo relacionado con sus interacciones energéticas y sus interconexiones políticas.
Resumo:
The aim of this paper is presenting the recommendation module of the Mathematics Collaborative Learning Platform (PCMAT). PCMAT is an Adaptive Educational Hypermedia System (AEHS), with a constructivist approach, which presents contents and activities adapted to the characteristics and learning style of students of mathematics in basic schools. The recommendation module is responsible for choosing different learning resources for the platform, based on the user's characteristics and performance. Since the main purpose of an adaptive system is to provide the user with content and interface adaptation, the recommendation module is integral to PCMAT’s adaptation model.
Resumo:
The main objective of an Adaptive System is to adequate its relation with the user (content presentation, navigation, interface, etc.) according to a predefined but updatable model of the user that reflects his objectives, preferences, knowledge and competences [Brusilovsky, 2001], [De Bra, 2004]. For Educational Adaptive Systems, the emphasis is placed on the student knowledge in the domain application and learning style, to allow him to reach the learning objectives proposed for his training [Chepegin, 2004]. In Educational AHS, the User Model (UM), or Student Model, has increased relevance: when the student reaches the objectives of the course, the system must be able to readapt, for example, to his knowledge [Brusilovsky, 2001]. Learning Styles are understood as something that intent to define models of how given person learns. Generally it is understood that each person has a Learning Style different and preferred with the objective of achieving better results. Some case studies have proposed that teachers should assess the learning styles of their students and adapt their classroom and methods to best fit each student's learning style [Kolb, 2005], [Martins, 2008]. The learning process must take into consideration the individual cognitive and emotional parts of the student. In summary each Student is unique so the Student personal progress must be monitored and teaching shoul not be not generalized and repetitive [Jonassen, 1991], [Martins, 2008]. The aim of this paper is to present an Educational Adaptive Hypermedia Tool based on Progressive Assessment.
Resumo:
The article reveals a new technological approach to the creation of adaptive systems of distance learning and knowledge control. The use of the given technology helps to automate the learning process with the help of adaptive system. Developed with the help of the quantum approach of knowledge setting, a programming module-controller guarantees the support of students’ attention and the adaptation of the object language, and this helps to provide the effective interaction between learners and the learning system and to reach good results in the intensification of learning process.
Resumo:
We are working on the confluence of knowledge management, organizational memory and emergent knowledge with the lens of complex adaptive systems. In order to be fundamentally sustainable organizations search for an adaptive need for managing ambidexterity of day-to-day work and innovation. An organization is an entity of a systemic nature, composed of groups of people who interact to achieve common objectives, making it necessary to capture, store and share interactions knowledge with the organization, this knowledge can be generated in intra-organizational or inter-organizational level. The organizations have organizational memory of knowledge of supported on the Information technology and systems. Each organization, especially in times of uncertainty and radical changes, to meet the demands of the environment, needs timely and sized knowledge on the basis of tacit and explicit. This sizing is a learning process resulting from the interaction that emerges from the relationship between the tacit and explicit knowledge and which we are framing within an approach of Complex Adaptive Systems. The use of complex adaptive systems for building the emerging interdependent relationship, will produce emergent knowledge that will improve the organization unique developing.
Resumo:
A general criterion for the design of adaptive systemsin digital communications called the statistical reference criterionis proposed. The criterion is based on imposition of the probabilitydensity function of the signal of interest at the outputof the adaptive system, with its application to the scenario ofhighly powerful interferers being the main focus of this paper.The knowledge of the pdf of the wanted signal is used as adiscriminator between signals so that interferers with differingdistributions are rejected by the algorithm. Its performance isstudied over a range of scenarios. Equations for gradient-basedcoefficient updates are derived, and the relationship with otherexisting algorithms like the minimum variance and the Wienercriterion are examined.
Resumo:
Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.