993 resultados para active contour
Resumo:
The performance of iris recognition systems is significantly affected by the segmentation accuracy, especially in non- ideal iris images. This paper proposes an improved method to localise non-circular iris images quickly and accurately. Shrinking and expanding active contour methods are consolidated when localising inner and outer iris boundaries. First, the pupil region is roughly estimated based on histogram thresholding and morphological operations. There- after, a shrinking active contour model is used to precisely locate the inner iris boundary. Finally, the estimated inner iris boundary is used as an initial contour for an expanding active contour scheme to find the outer iris boundary. The proposed scheme is robust in finding exact the iris boundaries of non-circular and off-angle irises. In addition, occlusions of the iris images from eyelids and eyelashes are automatically excluded from the detected iris region. Experimental results on CASIA v3.0 iris databases indicate the accuracy of proposed technique.
Resumo:
Western Blot analysis is an analytical technique used in Molecular Biology, Biochemistry, Immunogenetics and other Molecular Biology studies to separate proteins by electrophoresis. The procedure results in images containing nearly rectangular-shaped blots. In this paper, we address the problem of quantitation of the blots using automated image processing techniques. We formulate a special active contour (or snake) called Oblong, which locks on to rectangular shaped objects. Oblongs depend on five free parameters, which is also the minimum number of parameters required for a unique characterization. Unlike many snake formulations, Oblongs do not require explicit gradient computations and therefore the optimization is carried out fast. The performance of Oblongs is assessed on synthesized data and Western Blot Analysis images.
Resumo:
本文通过形状约束方程(组)与一般主动轮廓模型结合,将目标形状与主动轮廓模型融合到统一能量泛函模型中,提出了一种形状保持主动轮廓模型即曲线在演化过程中保持为某一类特定形状。模型通过参数化水平集函数的零水平集控制演化曲线形状,不仅达到了分割即目标的目的,而且能够给出特定目标的定量描述。根据形状保持主动轮廓模型,建立了一个用于椭圆状目标检测的统一能量泛函模型,导出了相应的Euler-Lagrange常微分方程并用水平集方法实现了椭圆状目标检测。此模型可以应用于眼底乳头分割,虹膜检测及相机标定。实验结果表明,此模型不仅能够准确的检测出给定图像中的椭圆状目标,而且有很强的抗噪、抗变形及遮挡性能。
Resumo:
具有全局平移优先属性的主动轮廓更适于目标跟踪。演化轮廓具有的全局平移优先性可以理解为沿轮廓的速度场具有相等的倾向。根据此思想,通过定义在曲线扰动集合上的新内积空间导出了一种简单,具有平移优先的梯度流。新的内积空间由于是通过向H0主动轮廓对应的內积空间引入曲线扰动的方差获得,所以此主动轮廓称为方差主动轮廓。方差主动轮廓是将H0主动轮廓与其对应的平均梯度流通过加权求和获得,而H1主动轮廓则是通过H0主动轮廓与特定类型的核函数进行卷积得到。因此方差主动轮廓实现时更简单和快速。最后给出了H0,H1和方差主动轮廓在频域与时域的分析。
Resumo:
Extraction and reconstruction of rectal wall structures from an ultrasound image is helpful for surgeons in rectal clinical diagnosis and 3-D reconstruction of rectal structures from ultrasound images. The primary task is to extract the boundary of the muscular layers on the rectal wall. However, due to the low SNR from ultrasound imaging and the thin muscular layer structure of the rectum, this boundary detection task remains a challenge. An active contour model is an effective high-level model, which has been used successfully to aid the tasks of object representation and recognition in many image-processing applications. We present a novel multigradient field active contour algorithm with an extended ability for multiple-object detection, which overcomes some limitations of ordinary active contour models—"snakes." The core part in the algorithm is the proposal of multigradient vector fields, which are used to replace image forces in kinetic function for alternative constraints on the deformation of active contour, thereby partially solving the initialization limitation of active contour for rectal wall boundary detection. An adaptive expanding force is also added to the model to help the active contour go through the homogenous region in the image. The efficacy of the model is explained and tested on the boundary detection of a ring-shaped image, a synthetic image, and an ultrasound image. The experimental results show that the proposed multigradient field-active contour is feasible for multilayer boundary detection of rectal wall
Resumo:
For active contour modeling (ACM), we propose a novel self-organizing map (SOM)-based approach, called the batch-SOM (BSOM), that attempts to integrate the advantages of SOM- and snake-based ACMs in order to extract the desired contours from images. We employ feature points, in the form of ail edge-map (as obtained from a standard edge-detection operation), to guide the contour (as in the case of SOM-based ACMs) along with the gradient and intensity variations in a local region to ensure that the contour does not "leak" into the object boundary in case of faulty feature points (weak or broken edges). In contrast with the snake-based ACMs, however, we do not use an explicit energy functional (based on gradient or intensity) for controlling the contour movement. We extend the BSOM to handle extraction of contours of multiple objects, by splitting a single contour into as many subcontours as the objects in the image. The BSOM and its extended version are tested on synthetic binary and gray-level images with both single and multiple objects. We also demonstrate the efficacy of the BSOM on images of objects having both convex and nonconvex boundaries. The results demonstrate the superiority of the BSOM over others. Finally, we analyze the limitations of the BSOM.
Resumo:
Most active-contour methods are based either on maximizing the image contrast under the contour or on minimizing the sum of squared distances between contour and image 'features'. The Marginalized Likelihood Ratio (MLR) contour model uses a contrast-based measure of goodness-of-fit for the contour and thus falls into the first class. The point of departure from previous models consists in marginalizing this contrast measure over unmodelled shape variations. The MLR model naturally leads to the EM Contour algorithm, in which pose optimization is carried out by iterated least-squares, as in feature-based contour methods. The difference with respect to other feature-based algorithms is that the EM Contour algorithm minimizes squared distances from Bayes least-squares (marginalized) estimates of contour locations, rather than from 'strongest features' in the neighborhood of the contour. Within the framework of the MLR model, alternatives to the EM algorithm can also be derived: one of these alternatives is the empirical-information method. Tracking experiments demonstrate the robustness of pose estimates given by the MLR model, and support the theoretical expectation that the EM Contour algorithm is more robust than either feature-based methods or the empirical-information method. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Measurement of lung ventilation is one of the most reliable techniques in diagnosing pulmonary diseases. The time-consuming and bias-prone traditional methods using hyperpolarized H 3He and 1H magnetic resonance imageries have recently been improved by an automated technique based on 'multiple active contour evolution'. This method involves a simultaneous evolution of multiple initial conditions, called 'snakes', eventually leading to their 'merging' and is entirely independent of the shapes and sizes of snakes or other parametric details. The objective of this paper is to show, through a theoretical analysis, that the functional dynamics of merging as depicted in the active contour method has a direct analogue in statistical physics and this explains its 'universality'. We show that the multiple active contour method has an universal scaling behaviour akin to that of classical nucleation in two spatial dimensions. We prove our point by comparing the numerically evaluated exponents with an equivalent thermodynamic model. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
Imaging flow cytometry is an emerging technology that combines the statistical power of flow cytometry with spatial and quantitative morphology of digital microscopy. It allows high-throughput imaging of cells with good spatial resolution, while they are in flow. This paper proposes a general framework for the processing/classification of cells imaged using imaging flow cytometer. Each cell is localized by finding an accurate cell contour. Then, features reflecting cell size, circularity and complexity are extracted for the classification using SVM. Unlike the conventional iterative, semi-automatic segmentation algorithms such as active contour, we propose a noniterative, fully automatic graph-based cell localization. In order to evaluate the performance of the proposed framework, we have successfully classified unstained label-free leukaemia cell-lines MOLT, K562 and HL60 from video streams captured using custom fabricated cost-effective microfluidics-based imaging flow cytometer. The proposed system is a significant development in the direction of building a cost-effective cell analysis platform that would facilitate affordable mass screening camps looking cellular morphology for disease diagnosis. Lay description In this article, we propose a novel framework for processing the raw data generated using microfluidics based imaging flow cytometers. Microfluidics microscopy or microfluidics based imaging flow cytometry (mIFC) is a recent microscopy paradigm, that combines the statistical power of flow cytometry with spatial and quantitative morphology of digital microscopy, which allows us imaging cells while they are in flow. In comparison to the conventional slide-based imaging systems, mIFC is a nascent technology enabling high throughput imaging of cells and is yet to take the form of a clinical diagnostic tool. The proposed framework process the raw data generated by the mIFC systems. The framework incorporates several steps: beginning from pre-processing of the raw video frames to enhance the contents of the cell, localising the cell by a novel, fully automatic, non-iterative graph based algorithm, extraction of different quantitative morphological parameters and subsequent classification of cells. In order to evaluate the performance of the proposed framework, we have successfully classified unstained label-free leukaemia cell-lines MOLT, K562 and HL60 from video streams captured using cost-effective microfluidics based imaging flow cytometer. The cell lines of HL60, K562 and MOLT were obtained from ATCC (American Type Culture Collection) and are separately cultured in the lab. Thus, each culture contains cells from its own category alone and thereby provides the ground truth. Each cell is localised by finding a closed cell contour by defining a directed, weighted graph from the Canny edge images of the cell such that the closed contour lies along the shortest weighted path surrounding the centroid of the cell from a starting point on a good curve segment to an immediate endpoint. Once the cell is localised, morphological features reflecting size, shape and complexity of the cells are extracted and used to develop a support vector machine based classification system. We could classify the cell-lines with good accuracy and the results were quite consistent across different cross validation experiments. We hope that imaging flow cytometers equipped with the proposed framework for image processing would enable cost-effective, automated and reliable disease screening in over-loaded facilities, which cannot afford to hire skilled personnel in large numbers. Such platforms would potentially facilitate screening camps in low income group countries; thereby transforming the current health care paradigms by enabling rapid, automated diagnosis for diseases like cancer.
Resumo:
This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt-and pepper-type noise. Second, considering the local geometrical features, e. g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.
Resumo:
This paper presents a new image segmentation method that applies an edge-based level set method in a relay fashion. The proposed method segments an image in a series of nested subregions that are automatically created by shrinking the stabilized curves in their previous subregions. The final result is obtained by combining all boundaries detected in these subregions. The proposed method has the following three advantages: 1) It can be automatically executed without human-computer interactions; 2) it applies the edge-based level set method with relay fashion to detect all boundaries; and 3) it automatically obtains a full segmentation without specifying the number of relays in advance. The comparison experiments illustrate that the proposed method performs better than the representative level set methods, and it can obtain similar or better results compared with other popular segmentation algorithms.
Resumo:
通过形状约束方程(组)与一般主动轮廓模型结合,将目标形状与主动轮廓模型融合到统一能量泛函模型中,提出一种形状保持主动轮廓模型。模型通过参数化水平集函数的零水平集表示某一类特定形状,不仅达到了分割即目标的目的,而且能够给出特定目标的定量描述。根据形状保持主动轮廓模型,建立一个用于长直条状目标检测的统一能量泛函模型,导出相应的Euler-Lagrange常微分方程并用水平集方法实现了长直条状区域的检测。此形状保持模型的一种特殊情况可以用于直线状地平(海天)线提取。实验结果表明,该模型不仅能够准确地检测出给定图像中的长直条状区域而且有很强的抗噪、抗变形及遮挡性能。
Resumo:
Three-dimensional reconstruction from volumetric medical images (e.g. CT, MRI) is a well-established technology used in patient-specific modelling. However, there are many cases where only 2D (planar) images may be available, e.g. if radiation dose must be limited or if retrospective data is being used from periods when 3D data was not available. This study aims to address such cases by proposing an automated method to create 3D surface models from planar radiographs. The method consists of (i) contour extraction from the radiograph using an Active Contour (Snake) algorithm, (ii) selection of a closest matching 3D model from a library of generic models, and (iii) warping the selected generic model to improve correlation with the extracted contour.
This method proved to be fully automated, rapid and robust on a given set of radiographs. Measured mean surface distance error values were low when comparing models reconstructed from matching pairs of CT scans and planar X-rays (2.57–3.74 mm) and within ranges of similar studies. Benefits of the method are that it requires a single radiographic image to perform the surface reconstruction task and it is fully automated. Mechanical simulations of loaded bone with different levels of reconstruction accuracy showed that an error in predicted strain fields grows proportionally to the error level in geometric precision. In conclusion, models generated by the proposed technique are deemed acceptable to perform realistic patient-specific simulations when 3D data sources are unavailable.