852 resultados para abdominal aorta aneurysm
Resumo:
Open surgical repair of complex abdominal aortic aneurysms requires more extensive dissection and aortic clamping above the renal or mesenteric arteries. Although results of open surgical series have shown variation, morbidity and mortality is higher compared with infrarenal aortic aneurysm repair. Potential complications include renal insufficiency, mesenteric ischemia, multisystem organ failure, and death. Although endovascular treatment with fenestrated and branched endografts might potentially decrease the risk of complications and mortality, its role is not yet defined and the technology is not widely available. Issues related to durability of the procedure and secondary interventions might limit its application to patients with higher risk or those with hostile anatomy. This article summarizes the clinical results of open surgical repair of pararenal abdominal aortic aneurysms to provide a benchmark for comparison with results of endovascular treatment, using fenestrated and branched techniques. © Annals of Vascular Surgery Inc.
Resumo:
Background Aneurysm expansion rate is an important indicator of the potential risk of abdominal aortic aneurysm (AAA) rupture. Stress within the AAA wall is also thought to be a trigger for its rupture. However, the association between aneurysm wall stresses and expansion of AAA is unclear. Methods and Results Forty-four patients with AAAs were included in this longitudinal follow-up study. They were assessed by serial abdominal ultrasonography and computed tomography scans if a critical size was reached or a rapid expansion occurred. Patient-specific 3-dimensional AAA geometries were reconstructed from the follow-up computed tomography images. Structural analysis was performed to calculate the wall stresses of the AAA models at both baseline and final visit. A nonlinear large-strain finite element method was used to compute the wall-stress distribution. The relationship between wall stresses and expansion rate was investigated. Slowly and rapidly expanding aneurysms had comparable baseline maximum diameters (median, 4.35 cm [interquartile range, 4.12 to 5.0 cm] versus 4.6 cm [interquartile range, 4.2 to 5.0 cm]; P=0.32). Rapidly expanding AAAs had significantly higher shoulder stresses than slowly expanding AAAs (median, 300 kPa [interquartile range, 280 to 320 kPa] versus 225 kPa [interquartile range, 211 to 249 kPa]; P=0.0001). A good correlation between shoulder stress at baseline and expansion rate was found (r=0.71; P=0.0001). Conclusion A higher shoulder stress was found to have an association with a rapidly expanding AAA. Therefore, it may be useful for estimating the expansion of AAAs and improve risk stratification of patients with AAAs.
Resumo:
Background—Abdominal aortic aneurysm (AAA) is a common cardiovascular disease among older people and demonstrates significant heritability. In contrast to similar complex diseases, relatively few genetic associations with AAA have been confirmed. We reanalysed our genome-wide study and carried through to replication suggestive discovery associations at a lower level of significance.
Methods and Results—A genome-wide association study was conducted using 1,830 cases from the UK, New Zealand and Australia with infra-renal aorta diameter =30mm or ruptured AAA and 5,435 unscreened controls from the 1958 Birth Cohort and National Blood Service cohort from the Wellcome Trust Case Control Consortium. Eight suggestive associations with P<1x10-4 were carried through to in silico replication in 1,292 AAA cases and 30,503 controls. One SNP associated with P<0.05 after Bonferroni correction in the in silico study underwent further replication (706 AAA cases and 1,063 controls from the UK, 507 AAA cases and 199 controls from Denmark and 885 AAA cases and 1,000 controls from New Zealand). Low density lipoprotein receptor (LDLR) rs6511720 A, was significantly associated overall and in three of five individual replication studies. The full study showed an association that reached genome-wide significance (odds ratio 0.76; 95% confidence interval 0.70 to 0.83; P=2.08x10-10).
Conclusions—LDLR rs6511720 is associated with abdominal aortic aneurysm. This finding is consistent with established effects of this variant on coronary artery disease. Shared aetiological pathways with other cardiovascular diseases may present novel opportunities for preventative and therapeutic strategies for AAA.
Resumo:
This thesis was created in Word and converted to PDF using Mac OS X 10.7.5 Quartz PDFContext.
Resumo:
Le traitement chirurgical des anévrismes de l'aorte abdominale est de plus en plus remplacé par la réparation endovasculaire de l’anévrisme (« endovascular aneurysm repair », EVAR) en utilisant des endoprothèses (« stent-grafts », SGs). Cependant, l'efficacité de cette approche moins invasive est compromise par l'incidence de l'écoulement persistant dans l'anévrisme, appelé endofuites menant à une rupture d'anévrisme si elle n'est pas détectée. Par conséquent, une surveillance de longue durée par tomodensitométrie sur une base annuelle est nécessaire ce qui augmente le coût de la procédure EVAR, exposant le patient à un rayonnement ionisants et un agent de contraste néphrotoxique. Le mécanisme de rupture d'anévrisme secondaire à l'endofuite est lié à une pression du sac de l'anévrisme proche de la pression systémique. Il existe une relation entre la contraction ou l'expansion du sac et la pressurisation du sac. La pressurisation résiduelle de l'anévrisme aortique abdominale va induire une pulsation et une circulation sanguine à l'intérieur du sac empêchant ainsi la thrombose du sac et la guérison de l'anévrisme. L'élastographie vasculaire non-invasive (« non-invasive vascular elastography », NIVE) utilisant le « Lagrangian Speckle Model Estimator » (LSME) peut devenir une technique d'imagerie complémentaire pour le suivi des anévrismes après réparation endovasculaire. NIVE a la capacité de fournir des informations importantes sur l'organisation d'un thrombus dans le sac de l'anévrisme et sur la détection des endofuites. La caractérisation de l'organisation d'un thrombus n'a pas été possible dans une étude NIVE précédente. Une limitation de cette étude était l'absence d'examen tomodensitométrique comme étalon-or pour le diagnostic d'endofuites. Nous avons cherché à appliquer et optimiser la technique NIVE pour le suivi des anévrismes de l'aorte abdominale (AAA) après EVAR avec endoprothèse dans un modèle canin dans le but de détecter et caractériser les endofuites et l'organisation du thrombus. Des SGs ont été implantés dans un groupe de 18 chiens avec un anévrisme créé dans l'aorte abdominale. Des endofuites de type I ont été créés dans 4 anévrismes, de type II dans 13 anévrismes tandis qu’un anévrisme n’avait aucune endofuite. L'échographie Doppler (« Doppler ultrasound », DUS) et les examens NIVE ont été réalisés avant puis à 1 semaine, 1 mois, 3 mois et 6 mois après l’EVAR. Une angiographie, une tomodensitométrie et des coupes macroscopiques ont été réalisées au moment du sacrifice. Les valeurs de contrainte ont été calculées en utilisant l`algorithme LSME. Les régions d'endofuite, de thrombus frais (non organisé) et de thrombus solide (organisé) ont été identifiées et segmentées en comparant les résultats de la tomodensitométrie et de l’étude macroscopique. Les valeurs de contrainte dans les zones avec endofuite, thrombus frais et organisé ont été comparées. Les valeurs de contrainte étaient significativement différentes entre les zones d'endofuites, les zones de thrombus frais ou organisé et entre les zones de thrombus frais et organisé. Toutes les endofuites ont été clairement caractérisées par les examens d'élastographie. Aucune corrélation n'a été trouvée entre les valeurs de contrainte et le type d'endofuite, la pression de sac, la taille des endofuites et la taille de l'anévrisme.
Resumo:
Background: Smoking is the most relevant environmental factor that affects the development of aortic aneurysm. Smokers have elevated levels of elastase activity in the arterial wall, which leads to weakening of the aorta. The aim of this study was to verify whether cigarette smoke exposure itself is capable of altering the aortic wall. Methods: Forty-eight Wistar rats were divided into 2-, 4-, and 6-month experimental periods and into 2 groups: smokers (submitted to smoke exposure at a rate of 40 cigarettes/day) and nonsmokers. At the end of the experimental periods, the aortas were removed and cross-sectioned to obtain histologic specimens for light microscopic and morphometric analyses. The remaining longitudinal segments were stretched to rupture and mechanical parameters were determined. Results: A degenerative process (i.e., a reduction in elastic fibers, the loss of lamellar arrangement, and a reduction of smooth muscle cells) was observed, and this effect was proportional in intensity to the period of tobacco exposure. We observed a progressive reduction in the yield point of the thoracic aorta over time (P < 0.05). There was a decrease in stiffness (P < 0.05) and in failure load (P < 0.05) at 6 months in the abdominal aorta of rats in the smoking group. Conclusions: Chronic exposure to tobacco smoke can affect the mechanical properties of the aorta and can also provoke substantial structural changes of the arterial wall. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Giant aortic aneurysms (transverse diameter greater than 10.0 cm) are rare and open surgery is often the treatment of choice. We report an infrarenal saccular giant aortic aneurysm (measuring 25 cm in transverse diameter), which was treated with endovascular repair, with immediate technical success. No similar report of a giant infrarenal aortic aneurysm treated with an endovascular technique was found in the literature. High-risk patients could possibly benefit from the endovascular technique. Nevertheless, patient survival remains strongly influenced by comorbidities.
Resumo:
Endovascular aneurysm repair (EVAR) is already considered the first choice treatment for abdominal aortic aneurysms (AAA). Several different strategies have been used to address limitations to arterial access caused by unfavorable iliac artery anatomy. The aim of this report is to illustrate the advantages and limitations of each option and present the results of using the internal endoconduit technique and the difficulties involved.
Resumo:
Background: Smoking is the most relevant environmental factor that affects the development of aortic aneurysm. Smokers have elevated levels of elastase activity in the arterial wall, which leads to weakening of the aorta. The aim of this study was to verify whether cigarette smoke exposure itself is capable of altering the aortic wall. Methods: Forty-eight Wistar rats were divided into 2-, 4-, and 6-month experimental periods and into 2 groups: smokers (submitted to smoke exposure at a rate of 40 cigarettes/day) and nonsmokers. At the end of the experimental periods, the aortas were removed and crosssectioned to obtain histologic specimens for light microscopic and morphometric analyses. The remaining longitudinal segments were stretched to rupture and mechanical parameters were determined. Results: A degenerative process (i.e., a reduction in elastic fibers, the loss of lamellar arrangement, and a reduction of smooth muscle cells) was observed, and this effect was proportional in intensity to the period of tobacco exposure. We observed a progressive reduction in the yield point of the thoracic aorta over time (P < 0.05). There was a decrease in stiffness (P < 0.05) and in failure load (P < 0.05) at 6 months in the abdominal aorta of rats in the smoking group. Conclusions: Chronic exposure to tobacco smoke can affect the mechanical properties of the aorta and can also provoke substantial structural changes of the arterial wall
Resumo:
AIMS In this work, we provide novel insight into the morphology of dissecting abdominal aortic aneurysms in angiotensin II-infused mice. We demonstrate why they exhibit a large variation in shape and, unlike their human counterparts, are located suprarenally rather than infrarenally. METHODS AND RESULTS We combined synchrotron-based, ultra-high resolution ex vivo imaging (phase contrast X-Ray tomographic microscopy) with in vivo imaging (high-frequency ultrasound and contrast-enhanced micro-CT) and image-guided histology. In all mice, we observed a tear in the tunica media of the abdominal aorta near the ostium of the celiac artery. Independently we found that, unlike the gradual luminal expansion typical for human aneurysms, the outer diameter increase of angiotensin II-induced dissecting aneurysms in mice was related to one or several intramural haematomas. These were caused by ruptures of the tunica media near the ostium of small suprarenal side branches, which had never been detected by the established small animal imaging techniques. The tear near the celiac artery led to apparent luminal dilatation, while the intramural haematoma led to a dissection of the tunica adventitia on the left suprarenal side of the aorta. The number of ruptured branches was higher in those aneurysms that extended into the thoracic aorta, which explained the observed variability in aneurysm shape. CONCLUSION Our results are the first to describe apparent luminal dilatation, suprarenal branch ruptures, and intramural haematoma formation in dissecting abdominal aortic aneurysms in mice. Moreover, we validate and demonstrate the vast potential of phase contrast X-ray tomographic microscopy in cardiovascular small animal applications.
Resumo:
INTRODUCTION Since the initial publication in 2000, Angiotensin II-infused mice have become one of the most popular models to study abdominal aortic aneurysm in a pre-clinical setting. We recently used phase contrast X-ray based computed tomography to demonstrate that these animals develop an apparent luminal dilatation and an intramural hematoma, both related to mural ruptures in the tunica media in the vicinity of suprarenal side branches. AIMS The aim of this narrative review was to provide an extensive overview of small animal applicable techniques that have provided relevant insight into the pathogenesis and morphology of dissecting AAA in mice, and to relate findings from these techniques to each other and to our recent PCXTM-based results. Combining insights from recent and consolidated publications we aimed to enhance our understanding of dissecting AAA morphology and anatomy. RESULTS AND CONCLUSION We analyzed in vivo and ex vivo images of aortas obtained from macroscopic anatomy, histology, high-frequency ultrasound, contrast-enhanced micro-CT, micro-MRI and PCXTM. We demonstrate how in almost all publications the aorta has been subdivided into a part in which an intact lumen lies adjacent to a remodeled wall/hematoma, and a part in which elastic lamellae are ruptured and the lumen appears to be dilated. We show how the novel paradigm fits within the existing one, and how 3D images can explain and connect previously published 2D structures. We conclude that PCXTM-based findings are in line with previous results, and all evidence points towards the fact that dissecting AAAs in Angiotensin II-infused mice are actually caused by ruptures of the tunica media in the immediate vicinity of small side branches.
Resumo:
Abdominal Aortic Aneurism is a disease related to a weakening in the aortic wall that can cause a break in the aorta and the death. The detection of an unusual dilatation of a section of the aorta is an indicative of this disease. However, it is difficult to diagnose because it is necessary image diagnosis using computed tomography or magnetic resonance. An automatic diagnosis system would allow to analyze abdominal magnetic resonance images and to warn doctors if any anomaly is detected. We focus our research in magnetic resonance images because of the absence of ionizing radiation. Although there are proposals to identify this disease in magnetic resonance images, they need an intervention from clinicians to be precise and some of them are computationally hard. In this paper we develop a novel approach to analyze magnetic resonance abdominal images and detect the lumen and the aortic wall. The method combines different algorithms in two stages to improve the detection and the segmentation so it can be applied to similar problems with other type of images or structures. In a first stage, we use a spatial fuzzy C-means algorithm with morphological image analysis to detect and segment the lumen; and subsequently, in a second stage, we apply a graph cut algorithm to segment the aortic wall. The obtained results in the analyzed images are pretty successful obtaining an average of 79% of overlapping between the automatic segmentation provided by our method and the aortic wall identified by a medical specialist. The main impact of the proposed method is that it works in a completely automatic way with a low computational cost, which is of great significance for any expert and intelligent system.
Resumo:
To help with the clinical screening and diagnosis of abdominal aortic aneurysm (AAA), we evaluated the effect of inflow angle (IA) and outflow bifurcation angle (BA) on the distribution of blood flow and wall shear stress (WSS) in an idealized AAA model. A 2D incompressible Newtonian flow is assumed and the computational simulation is performed using finite volume method. The results showed that the largest WSS often located at the proximal and the distal end of the AAA. An increase in IA resulted in an increase in maximum WSS. We also found that WSS was maximal when BA was 90°. IA and BA are two important geometrical factors, they may help with AAA risk assessment along with the commonly used AAA diameter.
Resumo:
Objective: To compare the differences in the hemodynamic parameters of abdominal aortic aneurysm (AAA) between fluid-structure interaction model (FSIM) and fluid-only model (FM), so as to discuss their application in the research of AAA. Methods: An idealized AAA model was created based on patient-specific AAA data. In FM, the flow, pressure and wall shear stress (WSS) were computed using finite volume method. In FSIM, an Arbitrary Lagrangian-Eulerian algorithm was used to solve the flow in a continuously deforming geometry. The hemodynamic parameters of both models were obtained for discussion. Results: Under the same inlet velocity, there were only two symmetrical vortexes in the AAA dilation area for FSIM. In contrast, four recirculation areas existed in FM; two were main vortexes and the other two were secondary flow, which were located between the main recirculation area and the arterial wall. Six local pressure concentrations occurred in the distal end of AAA and the recirculation area for FM. However, there were only two local pressure concentrations in FSIM. The vortex center of the recirculation area in FSIM was much more close to the distal end of AAA and the area was much larger because of AAA expansion. Four extreme values of WSS existed at the proximal of AAA, the point of boundary layer separation, the point of flow reattachment and the distal end of AAA, respectively, in both FM and FSIM. The maximum wall stress and the largest wall deformation were both located at the proximal and distal end of AAA. Conclusions: The number and center of the recirculation area for both models are different, while the change of vortex is closely associated with the AAA growth. The largest WSS of FSIM is 36% smaller than that of FM. Both the maximum wall stress and largest wall displacement shall increase with the outlet pressure increasing. FSIM needs to be considered for studying the relationship between AAA growth and shear stress.