47 resultados para Zymosan
Resumo:
Objective: To investigate the potential of inflammation to induce new adipose tissue formation in the in vivo environment. Methods and results: Using an established model of in vivo adipogenesis, a silicone chamber containing a Matrigel and fibroblast growth factor 2 (1 μg/ml) matrix was implanted into each groin of an adult male C57Bl6 mouse and vascularized with the inferior epigastric vessels. Sterile inflammation was induced in one of the two chambers by suspending Zymosan-A (ZA) (200-0.02 μg/ml) in the matrix at implantation. Adipose tissue formation was assessed at 6, 8, 12 and 24 weeks. ZA induced significant adipogenesis in an inverse dose-dependent manner (P<0.001). At 6 weeks adipose tissue formation was greatest with the lowest concentrations of ZA and least with the highest. Adipogenesis occurred both locally in the chamber containing ZA and in the ZA-free chamber in the contralateral groin of the same animal. ZA induced a systemic inflammatory response characterized by elevated serum tumour necrosis factor-α levels at early time points. Aminoguanidine (40 μg/ml) inhibited the adipogenic response to ZA-induced inflammation. Adipose tissue formed in response to ZA remained stable for 24 weeks, even when exposed to the normal tissue environment. Conclusions: These results demonstrate that inflammation can drive neo-adipogenesis in vivo. This suggests the existence of a positive feedback mechanism in obesity, whereby the state of chronic, low-grade inflammation, characteristic of the condition, may promote further adipogenesis. The mobilization and recruitment of a circulating population of adipose precursor cells is likely to be implicated in this mechanism.
Resumo:
The fucoidan from Fucus vesiculosus is known for having diverse biological properties. This study analyzed the therapeutic action of populations of commercial fucoidan (F. vesiculosus) on zymosan-induced arthritis. Three populations of fucoidan were obtained after acetone fractionation; these were denominated F1 (52.3%), F2 (36.7%) and F3 (10.7%). Chemical analyses showed that F1 contained the largest amount of sulfate ion. The electrophoretic profile shows that the commercial or total fucoidan (TF), different from the other fucoidans and from glycosaminoglycan patterns, is quite polydisperse, which indicates that it is composed of a mixture of sulfate polysaccharides. On the other hand, the fucoidans obtained from TF showed only an electrophoretic band with much lower polydispersion than that observed for TF. Fucoidan F2 showed a migration between fucoidans F1 and F3. Owing to the small amount of mass obtained from F3, we used only fucoidans F1 and F2 in the induced arthritis tests. After 1 hour of induction, we administered F1 or F2 (10, 25 and 50 mg/kg i.p.) or diclofenac sodium (10 mg/kg i.p.) or lumiracoxib (5 mg/kg o.a.) or L-NAME (30 mg/kg i.p.). After 6 hours, we performed analyses of cell influx and nitrite levels in addition to histopathological analysis. Fucoidans F1 and F2 were more potent both in decreasing the number of leukocytes and the amount of nitric oxide found in the synovial fluid. This indicates that the anti-inflammatory mechanism of these fucoidans is not only related to selectin block, but also to nitric oxide synthesis inhibition
Resumo:
Fucans seaweed Lobophora variegata estructures are known for their chemical and biological properties. In this study, we analyzed, the action of fucans L. variegata and the fractions purified with acetone in Zymosan-induced arthritis. After differential fractionation with acetone, six fractions were obtained and named F0.3, F0.5, F0.8, F1, F1.5 and F2. The results showed that the fraction F1 showed high yield (51.9%) and was chosen for studies of antioxidant activity and induced arthritis. Nuclear magnetic resonance (NMR) of 13C showed signals at 103.3 and 15.78 ppm that are assigned to links β13 galactose and of the C6 methyl fucose, respectively. The infrared (IR) showed absorbance at 1238 and 850 cm-1 which are attributed to sulfate. The fraction F1 showed antioxidant activities in vitro. For analysis of inflammatory parameters chosen the polysaccharide was administered in different doses (25, 50 and 75 mg / kg ip, per body weight) and diclofenac sodium (5 mg / kg ip) and L-NAME (25 mg / kg ip) in groups of animals (n = 6). After 6 h, were analyzed for cellular influx and levels of nitrite. In experiment five days, were made analysis of swelling and serum TNF-α. Histopathological analysis were performed for confirmation of results. The fraction F1 (25, 50 and 75 mg / kg ip) reduced the cellular influx (52.1 to 96.7%) and nitric oxide levels (27.2 - 39%) compared to control group. The reduction of edema (63.4 - 100%) and serum TNF-α (p <0.001) were observed when the polysaccharide F1 administered at a dose (50 mg / kg) These results suggest that these heterofucanas of Lobophora variegata have besides the activity antioxidant and potential anti-inflammatory activity in arthritis induced by zymosan
Resumo:
Arthritic pain is a serious health problem that affects a large number of patients. Toll-like receptors (TLRs) activation within the joints has been implicated in pathophysiology of arthritis. However, their role in the genesis of arthritic pain needs to be demonstrated. In the present study, it was addressed the participation of TLR2 and TLR4 and their adaptor molecule MyD88 in the genesis of joint hypernociception (a decrease in the nociceptive threshold) during zymosan-induced arthritis. Zymosan injected in the tibio-tarsal joint induced mechanical hypernociception in C57BL/6 wild type mice that was reduced in TLR2 and MyD88 null mice. On the other hand, zymosan-induced hypernociception was similar in C3H/HePas and C3H/Hej mice (TLR4 mutant mice). Zymosan-induced joint hypernociception was also reduced in TNFR1 null mice and in mice treated with IL-1 receptor antagonist or with an antagonist of CXCR1/2. Moreover, the joint production of TNF-alpha, IL-1 beta and CXCL1/KC by zymosan was dependent on TLR2/MyD88 signaling. Investigating the mechanisms by which TNF-alpha, IL-1 beta and CXCL1/KC mediate joint hypernociception, joint administration of these cytokines produced mechanical hypernociception, and they act in an interdependent manner. In last instance, their hypernociceptive effects were dependent on the production of hypernociceptive mediators, prostaglandins and sympathetic amines. These results indicate that in zymosan-induced experimental arthritis, TLR2/MyD88 is involved in the cascade of events of joint hypernociception through a mechanism dependent on cytokines and chemokines production. Thus, TLR2/MyD88 signaling might be a target for the development of novel drugs to control pain in arthritis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Zymosan-induced peritonitis is associated with an increased production of reactive nitrogen oxides that may contribute to the often-observed failure of multiple organ systems in this model of acute inflammation. Quantitative biochemical evidence is provided for a marked 13-fold increase in protein-bound 3-nitrotyrosine (NTyr), a biomarker of reactive nitrogen oxides, in liver tissue of zymosan-treated rats. In order to investigate the localization of NTyr in this affected tissue, a monoclonal antibody, designated 39B6, was raised against 3-(4-hydroxy-3-nitrophenylacetamido) propionic acid-bovine serum albumin conjugate and its performance characterized. 39B6 was judged by competition ELISA to be approximately 2 orders of magnitude more sensitive than a commercial anti-NTyr monoclonal antibody. Binding characteristics of 39B6 were similar, but not identical, to that of a commercial affinity-purified polyclonal antibody in ELISA and immunohistochemical analyses. Western blot experiments revealed high specificity of 39B6 against NTyr and increased immunoreactivity of specific proteins from liver tissue homogenates of zymosan-treated rats. Immunohistochemical analysis of liver sections indicated a marked zymosan-induced increase in immunofluorescent staining, which was particularly intense in or adjacent to nonparenchymal cells, but not in the parenchymal cells of this tissue. Quantitative analysis of fractions enriched in these cell populations corroborated the immunofluorescent data, although the relative amounts detected in response to zymosan treatment was greatly reduced compared to whole liver tissue. These results demonstrate the high specificity of the newly developed antibody and its usefulness in Western blot and immunohistochemical analysis for NTyr, confirm the presence of NTyr by complementary methods, and suggest the possible involvement of reactive nitrogen oxides in hepatic vascular dysfunction.
Resumo:
The fucoidan from Fucus vesiculosus is known for having diverse biological properties. This study analyzed the therapeutic action of populations of commercial fucoidan (F. vesiculosus) on zymosan-induced arthritis. Three populations of fucoidan were obtained after acetone fractionation; these were denominated F1 (52.3%), F2 (36.7%) and F3 (10.7%). Chemical analyses showed that F1 contained the largest amount of sulfate ion. The electrophoretic profile shows that the commercial or total fucoidan (TF), different from the other fucoidans and from glycosaminoglycan patterns, is quite polydisperse, which indicates that it is composed of a mixture of sulfate polysaccharides. On the other hand, the fucoidans obtained from TF showed only an electrophoretic band with much lower polydispersion than that observed for TF. Fucoidan F2 showed a migration between fucoidans F1 and F3. Owing to the small amount of mass obtained from F3, we used only fucoidans F1 and F2 in the induced arthritis tests. After 1 hour of induction, we administered F1 or F2 (10, 25 and 50 mg/kg i.p.) or diclofenac sodium (10 mg/kg i.p.) or lumiracoxib (5 mg/kg o.a.) or L-NAME (30 mg/kg i.p.). After 6 hours, we performed analyses of cell influx and nitrite levels in addition to histopathological analysis. Fucoidans F1 and F2 were more potent both in decreasing the number of leukocytes and the amount of nitric oxide found in the synovial fluid. This indicates that the anti-inflammatory mechanism of these fucoidans is not only related to selectin block, but also to nitric oxide synthesis inhibition
Resumo:
Purpose/Objective: The basis for poor outcomes in some patients post transfusion remains largely unknown. Despite leukodepletion, there is still evidence of immunomodulatory effects of transfusion that require further study. In addition, there is evidence that the age of blood components transfused significantly affects patient outcomes. Myeloid dendritic cell (DC) and monocyte immune function were studied utilising an in vitro whole blood model of transfusion. Materials and methods: Freshly collected (‘recipient’) whole blood was cultured with ABO compatible leukodepleted PRBC at 25% blood replacement-volume (6hrs). PRBC were assayed at [Day (D) 2, 14, 28and 42 (date-of expiry)]. In parallel, LPS or Zymosan (Zy) were added to mimic infection. Recipients were maintained for the duration of the time course (2 recipients, 4 PRBC units, n = 8).Recipient DC and monocyte intracellular cytokines and chemokines (IL-6, IL-10, IL-12,TNF-a, IL-1a, IL-8, IP-10, MIP-1a, MIP-1b, MCP-1) were measured using flow cytometry. Changes in immune response were calculated by comparison to a parallel no transfusion control (Wilcoxin matched pairs). Influence of storage age was calculated using ANOVA. Results: Significant suppression of DC and monocyte inflammatory responses were evident. DC and monocyte production of IL-1a was reduced following exposure to PRBC regardless of storage age (P < 0.05 at all time points). Storage independent PRBC mediated suppression of DC and monocyte IL-1a was also evident in cultures costimulated with Zy. In cultures co-stimulated with either LPS or Zy, significant suppression of DC and monocyte TNF-a and IL-6 was also evident. PRBC storage attenuated monocyte TNF-a production when co-cultured with LPS (P < 0.01 ANOVA). DC and monocyte production of MIP-1a was significantly reduced following exposure to PRBC (DC: P < 0.05 at D2, 28, 42; Monocyte P < 0.05 all time points). In cultures co-stimulated with LPS and zymosan, a similar suppression of MIP-1a production was also evident, and production of both DC and monocyte MIP-1b and IP-10 were also significantly reduced. Conclusions: The complexity of the transfusion context was reflected in the whole blood approach utilised. Significant suppression of these key DC and monocyte immune responses may contribute to patient outcomes, such as increased risk of infection and longer hospital stay, following blood transfusion.
Resumo:
Objective: An increasing body of evidence is emerging linking adipogenesis and inflammation. Obesity, alone or as a part of the metabolic syndrome, is characterized by a state of chronic low-level inflammation as revealed by raised plasma levels of inflammatory cytokines and acute-phase proteins. If inflammation can, in turn, increase adipose tissue growth, this may be the basis for a positive feedback loop in obesity. We have developed a tissue engineering model for growing adipose tissue in the mouse that allows quantification of increases in adipogenesis. In this study, we evaluated the adipogenic potential of the inflammogens monocyte chemoattractant protein (MCP)-I and zymosan-A (Zy) in a murine tissue engineering model. Research Methods and Procedures: MCP-I and Zy were added to chambers filled with Matrigel and fibroblastgrowth factor 2. To analyze the role of inducible nitric oxide synthase (iNOS), the iNOS inhibitor aminoguanidine was added to the chamber. Results: Our results show that MCP-I generated proportionally large quantities of new adipose tissue. This neoadipogenesis was accompanied by an ingrowth of macrophages and could be mimicked by Zy. Aminoguanidine significantly inhibited the formation of adipose tissue. Discussion: Our findings demonstrate that low-grade inflammation and iNOS expression are important factors in adipogenesis, Because fat neoformation in obesity and the metabolic syndrome is believed to be mediated by macrophage-derived proinflammatory cytokines, this adipose tissue engineering system provides a model that could potentially be used to further unravel the pathogenesis of these two metabolic disorders.
Resumo:
Beneficial effects on bone-implant bonding may accrue from ferromagnetic fiber networks on implants which can deform in vivo inducing controlled levels of mechanical strain directly in growing bone. This approach requires ferromagnetic fibers that can be implanted in vivo without stimulating undue inflammatory cell responses or cytotoxicity. This study examines the short-term in vitro responses, including attachment, viability, and inflammatory stimulation, of human peripheral blood monocytes to 444 ferritic stainless steel fiber networks. Two types of 444 networks, differing in fiber cross section and thus surface area, were considered alongside austenitic stainless steel fiber networks, made of 316L, a widely established implant material. Similar high percent seeding efficiencies were measured by CyQuant® on all fiber networks after 48 h of cell culture. Extensive cell attachment was confirmed by fluorescence and scanning electron microscopy, which showed round monocytes attached at various depths into the fiber networks. Medium concentrations of lactate dehydrogenase (LDH) and tumor necrosis factor alpha (TNF-α) were determined as indicators of viability and inflammatory responses, respectively. Percent LDH concentrations were similar for both 444 fiber networks at all time points, whereas significantly lower than those of 316L control networks at 24 h. All networks elicited low-level secretions of TNF-α, which were significantly lower than that of the positive control wells containing zymosan. Collectively, the results indicate that 444 networks produce comparable responses to medical implant grade 316L networks and are able to support human peripheral blood monocytes in short-term in vitro cultures without inducing significant inflammatory or cytotoxic effects.
Short-term cytotoxic and inflammatory responses of human monocytes to stainless steel fibre networks
Resumo:
The aim of the current work was to examine the human monocyte response to 444 ferritic stainless steel fibre networks. 316L austenitic fibre networks, of the same fibre volume fraction, were used as control surfaces. Fluorescence and scanning electron microscopies suggest that the cells exhibited a good degree of attachment and penetration throughout both networks. Lactate Dehydrogenase (LDH) and TNF-α releases were used as indicators of cytotoxicity and inflammatory responses respectively. LDH release indicated similar levels of monocyte viability when in contact with the 444 and 316L fibre networks. Both networks elicited a low level secretion of TNF-α, which was significantly lower than that of the positive control wells containing zymosan. Collectively, the results suggest that 444 ferritic and 316L austenitic networks induced similar cytotoxic and inflammatory responses from human monocytes. © 2012 Materials Research Society.
Resumo:
An electrochemical technique for the real-time detection of hydrogen peroxide (H2O2) was employed to describe respiratory burst activity (RBA) of phagocytes in plasma which can be used to evaluate the ability of immune system and disease resistance. The method is based upon the electric current changes, by redox reaction on platinum electrode of extracellular hydrogen peroxide (H2O2) released from phagocytes stimulated by the zymosan at 680 mV direct current (d.c.). Compared with the control, activation of respiratory burst by zymosan particles results in a high amperometric response, and a current peak was obtained during the whole monitoring process. The peak current was proved by addition Of Cu2+ and other controls, to be the result of intense release of H2O2 from phagocytes. The peak area was calculated and used to evaluate the quantity of effective H2O2, which represents the quantity of H2O2 beyond the clearance of related enzymes in plasma. According to Faraday's law, the phagocytes' ability of prawns to generate effective H2O2 was evaluated from 1.253 x 10(-14) mol/cell to 6.146 x 10(-14) mol/cell, and carp from 1.689 x 10(-15) Mol/Cell to 7.873 x 10(-1)5 mol/cell. This method is an acute and quick detection of extracellular effective H2O2 in plasma and reflects the capacity of phagocytes under natural conditions, which could be applied for selecting species and parents with high immunity for breeding in aquaculture. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are a superfamily of Ca2+ dependent carbohydrate-recognition proteins which play significant diverse roles in nonself-recognition and clearance of invaders. In the present study, a C-type lectin (CfLec-2) from Zhikong scallop Chlamys farreri was selected to investigate its functions in innate immunity. The mRNA expression of CfLec-2 in hemocytes was significantly up-regulated (P < 0.01) after scallops were stimulated by LPS. PGN or beta-glucan, and reached the highest expression level at 12h post-stimulation, which was 72.5-, 23.6- or 43.8-fold compared with blank group, respectively. The recombinant Cflec-2 (designated as rCfLec-2) could bind LPS, PGN, mannan and zymosan in vitro, but it could not bind beta-glucan. Immunofluorescence assay with polyclonal antibody specific for Cflec-2 revealed that CfLec-2 was mainly located in the mantle, kidney and gonad. Furthermore, rCfLec-2 could bind to the surface of scallop hemocytes, and then initiated cellular adhesion and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-2 serum. These results collectively suggested that CfLec-2 from the primitive deuterostome C. farreri could perform two distinct immune functions, pathogen recognition and cellular adhesion synchronously, while these functions were performed by collectins and selectins in vertebrates, respectively. The synchronous functions of pathogen recognition and cellular adhesion performed by CfLec-2 tempted us to suspect that CfLec-2 was an ancient form of C-type lectin, and apparently the differentiation of these two functions mediated by C-type lectins occurred after mollusk in phylogeny. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The interaction between microorganisms and host defense mechanisms is a decisive factor for the survival of marine bivalves. They rely on cell-mediated and humoral reactions to overcome the pathogens that naturally occur in the marine environment. In order to understand host defense reactions in animals inhabiting extreme environments we investigated some of the components from the immune system of the deep sea hydrothermal vent mussel Bathymodiolus azoricus. Cellular constituents in the hemolymph and extrapallial fluid were examined and led to the identification of three types of hemocytes revealing the granulocytes as the most abundant type of cell. To further characterize hemocyte types, the presence of cell surface carbohydrate epitopes was demonstrated with fluorescent WGA lectin, which was mostly ascribed to the granulocytes. Cellular reactions were then investigated by means of phagocytosis and by the activation of putative MAPKs using the microbial compounds zymosan, glucan, peptidoglycan and lipopolysaccharide. Two bacterial agents, Bacillus subtilis and Vibrio parahaemolyticus, were also used to stimulate hemocytes. The results showed that granulocytes were the main phagocytic cells in both hemolymph and extrapallial fluid of B. azoricus. Western blotting analyses using commercially available antibodies against ERK, p38 and JNK, suggested that these putative kinases are involved in signal transduction pathways during experimental stimulation of B. azoricus hemocytes. The fluorescent Ca2+ indicator Fura-2 AM was also insightful in demonstrating hemocyte stimulation in the presence of laminarin or live V. parahaemolyticus. Finally, the expression of the antibacterial gene mytilin was analyzed in gill tissues by means of RT-PCR and whole-mount in situ hybridization. Mytilin transcripts were localized in hemocytes underlying gill epithelium. Moreover, mytilin was induced by exposure of live animals to V. parahaemolyticus. These findings support the premise of a conserved innate immune system in B. azoricus. Such system is comparable to other Bivalves and involves the participation of cellular and humoral components. © 2008 Elsevier Inc. All rights reserved.
Resumo:
This study tested the hypothesis that a set of predominantly myeloid restricted receptors (F4/80, CD36, Dectin-1, CD200 receptor and mannan binding lectins) and the broadly expressed CD200 played a role in a key function of plasmacytoid DC (pDC), virally induced type I interferon (IFN) production. The Dectin-1 ligands zymosan, glucan phosphate and the anti-Dectin-1 monoclonal antibody (mAb) 2A11 had no effect on influenza virus induced IFNα/β production by murine splenic pDC. However, mannan, a broad blocking reagent against mannose specific receptors, inhibited IFNα/β production by pDC in response to inactivated influenza virus. Moreover, viral glycoproteins (influenza virus haemagglutinin and HIV-1 gp120) stimulated IFNα/β production by splenocytes in a mannan-inhibitable manner, implicating the function of a lectin in glycoprotein induced IFN production. Lastly, the effect of CD200 on IFN induction was investigated. CD200 knock-out macrophages produced more IFNα than wild-type macrophages in response to polyI:C, a MyD88-independent stimulus, consistent with CD200's known inhibitory effect on myeloid cells. In contrast, blocking CD200 with an anti-CD200 mAb resulted in reduced IFNα production by pDC-containing splenocytes in response to CpG and influenza virus (MyD88-dependent stimuli). This suggests there could be a differential effect of CD200 on MyD88 dependent and independent IFN induction pathways in pDC and macrophages. This study supports the hypothesis that a mannan-inhibitable lectin and CD200 are involved in virally induced type I IFN induction.
Resumo:
This work investigated the functional role of nuclear factor-kappa B (NF-kappa B) in respiratory burst activity and in expression of the human phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase genes CYBB, CYBA, NCF1, and NCF2. U937 cells with a stably transfected repressor of NF-kappa B (IKB alpha-S32A/S36A) demonstrated significantly lower superoxide release and lower CYBB and NCF1 gene expression compared with control U937 cells. We further tested Epstein-Barr virus (EBV)-transformed B cells from patients with anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID), an inherited disorderof NF-kappa B function. Superoxide release and CYBB gene expression by EDA-ID cells were significantly decreased compared with healthy cells and similar to cells from patients with X-linked chronic granulomatous disease (X91 degrees CGD). NCF1 gene expression in EDA-ID S321 cells was decreased compared with healthy control cells and similar to that in autosomal recessive (A47 degrees) CGD cells. Gel shift assays demonstrated loss of recombinant human p50 binding to a NF-kappa B site 5` to the CYBB gene in U937 cells treated with NF-kappa B inhibitors, repressor-transfected U937 cells, and EDA-ID patients cells. Zymosan phagocytosis was not affected by transfection of U937 cells with the NF-kappa B repressor. These studies show that NF-kappa B is necessary for CYBB and NCF1 gene expression and activation of the phagocyte NADPH oxidase in this model system.