993 resultados para X-rays: binaries
Resumo:
We studied the energy and frequency dependence of the Fourier time lags and intrinsic coherence of the kilohertz quasi-periodic oscillations (kHz QPOs) in the neutron-star lowmass X-ray binaries 4U 1608−52 and 4U 1636−53, using a large data set obtained with the Rossi X-ray Timing Explorer. We confirmed that, in both sources, the time lags of the lower kHz QPO are soft and their magnitude increases with energy. We also found that: (i) In 4U 1636−53, the soft lags of the lower kHz QPO remain constant at∼30 μs in the QPO frequency range 500–850 Hz, and decrease to ∼10 μs when the QPO frequency increases further. In 4U 1608−52, the soft lags of the lower kHz QPO remain constant at 40 μs up to 800 Hz, the highest frequency reached by this QPO in our data. (ii) In both sources, the time lags of the upper kHz QPO are hard, independent of energy or frequency and inconsistent with the soft lags of the lower kHz QPO. (iii) In both sources the intrinsic coherence of the lower kHz QPO remains constant at ∼0.6 between 5 and 12 keV, and drops to zero above that energy. The intrinsic coherence of the upper kHz QPO is consistent with being zero across the full energy range. (iv) In 4U 1636−53, the intrinsic coherence of the lower kHz QPO increases from ∼0 at ∼600 Hz to ∼1, and it decreases to ∼0.5 at 920 Hz; in 4U 1608−52, the intrinsic coherence is consistent with the same trend. (v) In both sources the intrinsic coherence of the upper kHz QPO is consistent with zero over the full frequency range of the QPO, except in 4U 1636−53 between 700 and 900 Hz where the intrinsic coherence marginally increases. We discuss our results in the context of scenarios in which the soft lags are either due to reflection off the accretion disc or up-/down-scattering in a hot medium close to the neutron star. We finally explore the connection between, on one hand the time lags and the intrinsic coherence of the kHz QPOs, and on the other the QPOs’ amplitude and quality factor in these two sources.
Resumo:
Aims. We study the optical and near-infrared colour excesses produced by circumstellar emission in a sample of Be/X-ray binaries. Our main goals are exploring whether previously published relations, valid for isolated Be stars, are applicable to Be/X-ray binaries and computing the distance to these systems after correcting for the effects of the circumstellar contamination. Methods. Simultaneous UBVRI photometry and spectra in the 3500−7000 Å spectral range were obtained for 11 optical counterparts to Be/X-ray binaries in the LMC, 5 in the SMC and 12 in the Milky Way. As a measure of the amount of circumstellar emission we used the Hα equivalent width corrected for photospheric absorption. Results. We find a linear relationship between the strength of the Hα emission line and the component of E(B − V) originating from the circumstellar disk. This relationship is valid for stars with emission lines weaker than EW ≈ −15 Å. Beyond this point, the circumstellar contribution to E(B − V) saturates at a value ≈0.17 mag. A similar relationship is found for the (V − I) near infrared colour excess, albeit with a steeper slope and saturation level. The circumstellar excess in (B − V) is found to be about five times higher for Be/X-ray binaries than for isolated Be stars with the same equivalent width EW(Hα), implying significant differences in the physical properties of their circumstellar envelopes. The distance to Be/X-ray binaries (with non-shell Be star companions) can only be correctly estimated by taking into account the excess emission in the V band produced by free-free and free-bound transitions in the circumstellar envelope. We provide a simple method to determine the distances that includes this effect.
Resumo:
The discovery of very slow pulsations (Pspin =5560 s) has solved the long-standing question of the nature of the compact object in the high-mass X-ray binary 4U 2206+54 but has posed new ones. According to spin evolutionary models in close binary systems, such slow pulsations require a neutron star magnetic field strength larger than the quantum critical value of 4.4 × 1013 G, suggesting the presence of a magnetar. We present the first XMM–Newton observations of 4U 2206+54 and investigate its spin evolution. We find that the observed spin-down rate agrees with the magnetar scenario. We analyse Integral Spacecraft Gamma-Ray Imager (ISGRI)/INTErnational Gamma-RAy Laboratory (INTEGRAL) observations of 4U 2206+54 to search for the previously suggested cyclotron resonance scattering feature at ∼30 keV. We do not find a clear indication of the presence of the line, although certain spectra display shallow dips, not always at 30 keV. The association of these dips with a cyclotron line is very dubious because of its apparent transient nature. We also investigate the energy spectrum of 4U 2206+54 in the energy range 0.3–10 keV with unprecedented detail and report for the first time the detection of very weak 6.5 keV fluorescence iron lines. The photoelectric absorption is consistent with the interstellar value, indicating very small amount of local matter, which would explain the weakness of the florescence lines. The lack of matter locally to the source may be the consequence of the relatively large orbital separation of the two components of the binary. The wind would be too tenuous in the vicinity of the neutron star.
Resumo:
We present a comprehensive analysis of the whole sample of available XMM-Newton observations of high-mass X-ray binaries (HMXBs) until August 2013, focusing on the FeKα emission line. This line is key to better understanding the physical properties of the material surrounding the X-ray source within a few stellar radii (the circumstellar medium). We collected observations from 46 HMXBs and detected FeKα in 21 of them. We used the standard classification of HMXBs to divide the sample into different groups. We find that (1) different classes of HMXBs display different qualitative behaviours in the FeKα spectral region. This is visible especially in SGXBs (showing ubiquitous Fe fluorescence but not recombination Fe lines) and in γ Cass analogues (showing both fluorescent and recombination Fe lines). (2) FeKα is centred at a mean value of 6.42 keV. Considering the instrumental and fits uncertainties, this value is compatible with ionization states that are lower than Fe xviii. (3) The flux of the continuum is well correlated with the flux of the line, as expected. Eclipse observations show that the Fe fluorescence emission comes from an extended region surrounding the X-ray source. (4) We observe an inverse correlation between the X-ray luminosity and the equivalent width of FeKα (EW). This phenomenon is known as the X-ray Baldwin effect. (5) FeKα is narrow (σline< 0.15 keV), reflecting that the reprocessing material does not move at high speeds. We attempt to explain the broadness of the line in terms of three possible broadening phenomena: line blending, Compton scattering, and Doppler shifts (with velocities of the reprocessing material V ~ 1000 km s-1). (6) The equivalent hydrogen column (NH) directly correlates to the EW of FeKα, displaying clear similarities to numerical simulations. It highlights the strong link between the absorbing and the fluorescent matter. (7) The observed NH in supergiant X-ray binaries (SGXBs) is in general higher than in supergiant fast X-ray transients (SFXTs). We suggest two possible explanations: different orbital configurations or a different interaction compact object – wind. (8) Finally, we analysed the sources IGR J16320-4751 and 4U 1700-37 in more detail, covering several orbital phases. The observed variation in NH between phases is compatible with the absorption produced by the wind of their optical companions. The results clearly point to a very important contribution of the donor’s wind in the FeKα emission and the absorption when the donor is a supergiant massive star.
Resumo:
Context. We monitored the quiescent thermal emission from neutron stars in low-mass X-ray binaries after active periods of intense activity in X-rays (outbursts). Aims. The theoretical modeling of the thermal relaxation of the neutron star crust may be used to establish constraints on the crust composition and transport properties, depending on the astrophysical scenarios assumed. Methods. We numerically simulated the thermal evolution of the neutron star crust and compared them with inferred surface temperatures for five sources: MXB 1659−29, KS 1731−260, XTE J1701−462, EXO 0748−676 and IGR J17480−2446. Results. We find that the evolution of MXB 1659−29, KS 1731−260 and EXO 0748−676 can be well described within a deep crustal cooling scenario. Conversely, we find that the other two sources can only be explained with models beyond crustal cooling. For the peculiar emission of XTE J1701−462 we propose alternative scenarios such as residual accretion during quiescence, additional heat sources in the outer crust, and/or thermal isolation of the inner crust due to a buried magnetic field. We also explain the very recent reported temperature of IGR J17480−2446 with an additional heat deposition in the outer crust from shallow sources.
Resumo:
Context. Classical supergiant X-ray binaries (SGXBs) and supergiant fast X-ray transients (SFXTs) are two types of high-mass X-ray binaries (HMXBs) that present similar donors but, at the same time, show very different behavior in the X-rays. The reason for this dichotomy of wind-fed HMXBs is still a matter of debate. Among the several explanations that have been proposed, some of them invoke specific stellar wind properties of the donor stars. Only dedicated empiric analysis of the donors’ stellar wind can provide the required information to accomplish an adequate test of these theories. However, such analyses are scarce. Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J17544-2619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 ± 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e< 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (ν∞ = 1500 km s-1 in IGR J17544-2619 and ν∞ = 700 km s-1 in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters.
Resumo:
In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV γ-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich data set of radio, hard and soft X-ray, and γ-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a ~3 day softening and recovery of the X-ray emission, followed almost immediately by a ~1 Jy radio flare at 15 GHz, followed by a 4.3σ γ-ray flare (E > 100 MeV) ~1.5 days later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the γ-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the γ-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for γ-ray emission from Cyg X-3.
Resumo:
In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV γ-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich data set of radio, hard and soft X-ray, and γ-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a ~3 day softening and recovery of the X-ray emission, followed almost immediately by a ~1 Jy radio flare at 15 GHz, followed by a 4.3σ γ-ray flare (E > 100 MeV) ~1.5 days later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the γ-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the γ-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for γ-ray emission from Cyg X-3.
Effect of therapeutic dose X rays on mechanical and chemical properties of esthetic dental materials
Resumo:
The aim of this study was to investigate the influence of therapeutic dose X rays on the microhardness (MH) and degree of conversion (DC) of two different esthetic restorative dental materials. The materials were photo-activated with a LED light-curing unit using three cure-times: 5, 20 and 40 seconds. The photo-activation was carried out in two distinct periods: before and after irradiation with doses of 5, 35 and 70 Gy, from a 6 MV X rays beam. In accordance with the methodology used, it was conclude that a therapeutic dose does not have a detrimental effect on the photoinitiator molecules, because the photo-activation occurred after they were irradiated. When the irradiation was applied before photo-activation, the materials showed MH improvement, but when photo-activation was performed after irradiation, there was less improvement. However, there was no correlation between MH and DC. Thus, a therapeutic dose applied to cured material can promote linking and breaking of chain bonds in a non-linear way.
Resumo:
The vials filled with Fricke solutions were doped with increasing concentrations of Photogem®, used in photodynamic therapy. These vials were then irradiated with low-energy X-rays with doses ranging from 5 to 20 Gy. The conventional Fricke solution was also irradiated with the same doses. The concentration of ferric ions for the Fricke and doped-Fricke irradiated solutions were measured in a spectrophotometer at 220 to 340 nm. The results showed that there was an enhancement in the response of the doped-Fricke solution, which was proportional to the concentration of the photosensitizer. The use of such procedure for studying the radiosensitizing property of photosensitizers based on the production of free radicals is also discussed.
Resumo:
Context. Close binary supersoft X-ray sources (CBSS) are binary systems that contain a white dwarf with stable nuclear burning on its surface. These sources, first discovered in the Magellanic Clouds, have high accretion rates and near-Eddington luminosities (10(37)-10(38) erg s(-1)) with high temperatures (T = 2-7 x 10(5) K). Aims. The total number of known objects in the MC is still small and, in our galaxy, even smaller. We observed the field of the unidentified transient supersoft X-ray source RX J0527.8-6954 in order to identify its optical counterpart. Methods. The observation was made with the IFU-GMOS on the Gemini South telescope with the purpose of identifying stars with possible He II or Balmer emission or else of observing nebular extended jets or ionization cones, features that may be expected in CBSS. Results. The X-ray source is identified with a B5e V star that is associated with subarcsecond extended H alpha emission, possibly bipolar. Conclusions. If the primary star is a white dwarf, as suggested by the supersoft X-ray spectrum, the expected orbital period exceeds 21 h; therefore, we believe that the 9.4 h period found so far is not associated to this system.
Resumo:
As a contribution towards detecting the genetic effects of low doses of genotoxic physical agents, this paper deals with the consequences of low-dose X-rays in the Aspergillus nidulans genome. The irradiation doses studied were those commonly used in dental clinics (1-5 cGy). Even very low doses promoted increased mitotic crossing-over frequencies in diploid strains heterozygous for several genetic markers including the ones involved in DNA repair and recombination mechanisms. Genetic markers of several heterozygous strains were individu`ally analyzed disclosing that some markers were especially sensitive to the treatments. These markers should be chosen as bio-indicators in the homozygotization index assay to better detect the recombinogenic/carcinogenic genomic effects of low-dose X-rays.
Resumo:
We report millimetre-wave continuum observations of the X-ray binaries Cygnus X-3, SS 433, LSI+61 303, Cygnus X-1 and GRS 1915+105. The observations were carried out with the IRAM 30 m-antenna at 250 GHz (1.25 mm) from 1998 March 14 to March 20. These millimetre measurements are complemented with centimetre observations from the Ryle Telescope, at 15 GHz (2.0 cm) and from the Green Bank Interferometer at 2.25 and 8.3 GHz (13 and 3.6 cm). Both Cygnus X-3 and SS 433 underwent moderate flaring events during our observations, whose main spectral evolution properties are described and interpreted. A significant spectral steepening was observed in both sources during the flare decay, that is likely to be caused by adiabatic expansion, inverse Compton and synchrotron losses. Finally, we also report 250 GHz upper limits for three additional undetected X-ray binary stars: LSI+65 010, LSI+61 235 and X Per.
Resumo:
Nationwide surveys on radiation dose to the population from medical radiology are recommended in order to follow the trends in population exposure and ensure radiation protection. The last survey in Switzerland was conducted in 1998, and the annual effective dose from medical radiology was estimated to be 1 mSv y(-1) per capita. The purpose of this work was to follow the trends in diagnostic radiology between 1998 and 2008 in Switzerland and determine the contribution of different modalities and types of examinations to the collective effective dose from medical x-rays. For this reason, an online database (www.raddose.ch) was developed. All healthcare providers who hold a license to run an x-ray unit in the country were invited to participate in the survey. More than 225 examinations, covering eight radiological modalities, were included in the survey. The average effective dose for each examination was reassessed. Data from about 3,500 users were collected (42% response rate). The survey showed that the annual effective dose was 1.2 mSv/capita in 2008. The most frequent examinations are conventional and dental radiographies (88%). The contribution of computed tomography was only 6% in terms of examination frequency but 68% in terms of effective dose. The comparison with other countries showed that the effective dose per capita in Switzerland was in the same range as in other countries with similar healthcare systems, although the annual number of examinations performed in Switzerland was higher.
Resumo:
Osteoporosis is a systemic bone disease that is characterized by a generalized reduction of the bone mass. It is the main cause of fractures in elderly women. Bone densitometry is used in the lumbar spine and hip in order to detect osteoporosis in its early stages. Different studies have observed a correlation between the bone mineral density of the jaw (BMD) and that of the lumbar spine and/or hip. On the other hand, there are studies that evaluate the findings in the orthopantomograms and perapical X-rays, correlating them with the early diagnosis of osteoporosis and highlighting the role of the dentist in the early diagnosis of this disease. Materials and methods: A search was carried out in the Medline-Pubmed database in order to identify those articles that deal with the association between the X-ray findings observed in the orthopantomograms and the diagnosis of the osteoporosis, as well as those that deal with the bone mineral density of the jaw. Results: There were 406 articles, and with the limits established, this number was reduced to 21. Almost all of the articles indicate that when examining oral X-rays, it is possible to detect signs indicative of osteoporosis. Discussion: The radiomorphometric indices use measurements in orthopantomograms and evaluate possible loss of bone mineral density. They can be analyzed alone or along with the visual indices. In the periapical X-rays, the photodensimetric analyses and the trabecular pattern appear to be the most useful. There are seven studies that analyze the densitometry of the jaw, but only three do so independently of the photodensitometric analysis. Conclusions: The combination of mandibular indices, along with surveys on the risk of fracture, can be useful as indicators of early diagnosis of osteoporosis. Visual and morphometric indices appear to be especially important in the orthopantomograms. Photodensitometry indices and the trabecular pattern are used in periapical X-rays. Studies on mandibular dual-energy X-ray absorptiometry are inconclusive