999 resultados para Workload generation
Resumo:
We present what we believe to be the first thorough characterization of live streaming media content delivered over the Internet. Our characterization of over five million requests spanning a 28-day period is done at three increasingly granular levels, corresponding to clients, sessions, and transfers. Our findings support two important conclusions. First, we show that the nature of interactions between users and objects is fundamentally different for live versus stored objects. Access to stored objects is user driven, whereas access to live objects is object driven. This reversal of active/passive roles of users and objects leads to interesting dualities. For instance, our analysis underscores a Zipf-like profile for user interest in a given object, which is to be contrasted to the classic Zipf-like popularity of objects for a given user. Also, our analysis reveals that transfer lengths are highly variable and that this variability is due to the stickiness of clients to a particular live object, as opposed to structural (size) properties of objects. Second, based on observations we make, we conjecture that the particular characteristics of live media access workloads are likely to be highly dependent on the nature of the live content being accessed. In our study, this dependence is clear from the strong temporal correlations we observed in the traces, which we attribute to the synchronizing impact of live content on access characteristics. Based on our analyses, we present a model for live media workload generation that incorporates many of our findings, and which we implement in GISMO [19].
Resumo:
We present a thorough characterization of the access patterns in blogspace, which comprises a rich interconnected web of blog postings and comments by an increasingly prominent user community that collectively define what has become known as the blogosphere. Our characterization of over 35 million read, write, and management requests spanning a 28-day period is done at three different levels. The user view characterizes how individual users interact with blogosphere objects (blogs); the object view characterizes how individual blogs are accessed; the server view characterizes the aggregate access patterns of all users to all blogs. The more-interactive nature of the blogosphere leads to interesting traffic and communication patterns, which are different from those observed for traditional web content. We identify and characterize novel features of the blogosphere workload, and we show the similarities and differences between typical web server workloads and blogosphere server workloads. Finally, based on our main characterization results, we build a new synthetic blogosphere workload generator called GBLOT, which aims at mimicking closely a stream of requests originating from a population of blog users. Given the increasing share of blogspace traffic, realistic workload models and tools are important for capacity planning and traffic engineering purposes.
Resumo:
One role for workload generation is as a means for understanding how servers and networks respond to variation in load. This enables management and capacity planning based on current and projected usage. This paper applies a number of observations of Web server usage to create a realistic Web workload generation tool which mimics a set of real users accessing a server. The tool, called Surge (Scalable URL Reference Generator) generates references matching empirical measurements of 1) server file size distribution; 2) request size distribution; 3) relative file popularity; 4) embedded file references; 5) temporal locality of reference; and 6) idle periods of individual users. This paper reviews the essential elements required in the generation of a representative Web workload. It also addresses the technical challenges to satisfying this large set of simultaneous constraints on the properties of the reference stream, the solutions we adopted, and their associated accuracy. Finally, we present evidence that Surge exercises servers in a manner significantly different from other Web server benchmarks.
Resumo:
DNA sequencing is now faster and cheaper than ever before, due to the development of next generation sequencing (NGS) technologies. NGS is now widely used in the research setting and is becoming increasingly utilised in clinical practice. However, due to evolving clinical commitments, increased workload and lack of training opportunities, many oncologists may be unfamiliar with the terminology and technology involved. This can lead to oncologists feeling daunted by issues such as how to interpret the vast amounts of data generated by NGS and the differences between sequencing platforms. This review article explains common concepts and terminology, summarises the process of DNA sequencing (including data analysis) and discusses the main factors to consider when deciding on a sequencing method. This article aims to improve oncologists' understanding of the most commonly used sequencing platforms and the ongoing challenges faced in expanding the use of NGS into routine clinical practice.
Resumo:
This paper traces the evolutions of a new generation of students who are predominantly the ‘online generation’; explores the emerging impact of this generation on industry; identifies the changing role of education from traditional classroom to an online environment; and explores the contribution related to integrated marketing communications (IMC). Educational requirements from a business perspective must incorporate global business demands; virtual learning environments progress the online generation towards a post-modern learning state. The central proposition of this paper is that the emergence of IMC in evolving industry practices is influenced by student generations who are producing a new paradigm of alignment between education and industry. This is purely a conceptual exploration using limited examples to provide some context and illustrate the questions raised for consideration.