959 resultados para Workflow Execution
Resumo:
Provenance plays a major role when understanding and reusing the methods applied in a scientic experiment, as it provides a record of inputs, the processes carried out and the use and generation of intermediate and nal results. In the specic case of in-silico scientic experiments, a large variety of scientic workflow systems (e.g., Wings, Taverna, Galaxy, Vistrails) have been created to support scientists. All of these systems produce some sort of provenance about the executions of the workflows that encode scientic experiments. However, provenance is normally recorded at a very low level of detail, which complicates the understanding of what happened during execution. In this paper we propose an approach to automatically obtain abstractions from low-level provenance data by finding common workflow fragments on workflow execution provenance and relating them to templates. We have tested our approach with a dataset of workflows published by the Wings workflow system. Our results show that by using these kinds of abstractions we can highlight the most common abstract methods used in the executions of a repository, relating different runs and workflow templates with each other.
Resumo:
The paper presents how workflow-oriented, single-user Grid portals could be extended to meet the requirements of users with collaborative needs. Through collaborative Grid portals different research and engineering teams would be able to share knowledge and resources. At the same time the workflow concept assures that the shared knowledge and computational capacity is aggregated to achieve the high-level goals of the group. The paper discusses the different issues collaborative support requires from Grid portal environments during the different phases of the workflow-oriented development work. While in the design period the most important task of the portal is to provide consistent and fault tolerant data management, during the workflow execution it must act upon the security framework its back-end Grids are built on.
Resumo:
Interconnecting business processes across systems and organisations is considered to provide significant benefits, such as greater process transparency, higher degrees of integration, facilitation of communication, and consequently higher throughput in a given time interval. However, to achieve these benefits requires tackling constraints. In the context of this paper these are privacy-requirements of the involved workflows and their mutual dependencies. Workflow views are a promising conceptional approach to address the issue of privacy; however this approach requires addressing the issue of interdependencies between workflow view and adjacent private workflow. In this paper we focus on three aspects concerning the support for execution of cross-organisational workflows that have been modelled with a workflow view approach: (i) communication between the entities of a view-based workflow model, (ii) their impact on an extended workflow engine, and (iii) the design of a cross-organisational workflow architecture (CWA). We consider communication aspects in terms of state dependencies and control flow dependencies. We propose to tightly couple private workflow and workflow view with state dependencies, whilst to loosely couple workflow views with control flow dependencies. We introduce a Petri-Net-based state transition approach that binds states of private workflow tasks to their adjacent workflow view-task. On the basis of these communication aspects we develop a CWA for view-based cross-organisational workflow execution. Its concepts are valid for mediated and unmediated interactions and express no choice of a particular technology. The concepts are demonstrated by a scenario, run by two extended workflow management systems. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Workflows are set of activities that implement and realise business goals. Modern business goals add extra requirements on workflow systems and their management. Workflows may cross many organisations and utilise services on a variety of devices and/or supported by different platforms. Current workflows are therefore inherently context-aware. Each context is governed and constrained by its own policies and rules to prevent unauthorised participants from executing sensitive tasks and also to prevent tasks from accessing unauthorised services and/or data. We present a sound and multi-layered design language for the design and analysis of secure and context aware workflows systems.
Resumo:
Doctoral Program in Computer Science
Resumo:
Reproducible research in scientific workflows is often addressed by tracking the provenance of the produced results. While this approach allows inspecting intermediate and final results, improves understanding, and permits replaying a workflow execution, it does not ensure that the computational environment is available for subsequent executions to reproduce the experiment. In this work, we propose describing the resources involved in the execution of an experiment using a set of semantic vocabularies, so as to conserve the computational environment. We define a process for documenting the workflow application, management system, and their dependencies based on 4 domain ontologies. We then conduct an experimental evaluation using a real workflow application on an academic and a public Cloud platform. Results show that our approach can reproduce an equivalent execution environment of a predefined virtual machine image on both computing platforms.
Resumo:
A ciência tem feito uso frequente de recursos computacionais para execução de experimentos e processos científicos, que podem ser modelados como workflows que manipulam grandes volumes de dados e executam ações como seleção, análise e visualização desses dados segundo um procedimento determinado. Workflows científicos têm sido usados por cientistas de várias áreas, como astronomia e bioinformática, e tendem a ser computacionalmente intensivos e fortemente voltados à manipulação de grandes volumes de dados, o que requer o uso de plataformas de execução de alto desempenho como grades ou nuvens de computadores. Para execução dos workflows nesse tipo de plataforma é necessário o mapeamento dos recursos computacionais disponíveis para as atividades do workflow, processo conhecido como escalonamento. Plataformas de computação em nuvem têm se mostrado um alternativa viável para a execução de workflows científicos, mas o escalonamento nesse tipo de plataforma geralmente deve considerar restrições específicas como orçamento limitado ou o tipo de recurso computacional a ser utilizado na execução. Nesse contexto, informações como a duração estimada da execução ou limites de tempo e de custo (chamadas aqui de informações de suporte ao escalonamento) são importantes para garantir que o escalonamento seja eficiente e a execução ocorra de forma a atingir os resultados esperados. Este trabalho identifica as informações de suporte que podem ser adicionadas aos modelos de workflows científicos para amparar o escalonamento e a execução eficiente em plataformas de computação em nuvem. É proposta uma classificação dessas informações, e seu uso nos principais Sistemas Gerenciadores de Workflows Científicos (SGWC) é analisado. Para avaliar o impacto do uso das informações no escalonamento foram realizados experimentos utilizando modelos de workflows científicos com diferentes informações de suporte, escalonados com algoritmos que foram adaptados para considerar as informações inseridas. Nos experimentos realizados, observou-se uma redução no custo financeiro de execução do workflow em nuvem de até 59% e redução no makespan chegando a 8,6% se comparados à execução dos mesmos workflows sendo escalonados sem nenhuma informação de suporte disponível.
Resumo:
Intelligent environments aim at supporting the user in executing her everyday tasks, e.g. by guiding her through a maintenance or cooking procedure. This requires a machine processable representation of the tasks for which workflows have proven an efficient means. The increasing number of available sensors in intelligent environments can facilitate the execution of workflows. The sensors can help to recognize when a user has finished a step in the workflow and thus to automatically proceed to the next step. This can heavily reduce the amount of required user interaction. However, manually specifying the conditions for triggering the next step in a workflow is very cumbersome and almost impossible for environments which are not known at design time. In this paper, we present a novel approach for learning and adapting these conditions from observation. We show that the learned conditions can even outperform the quality as conditions manually specified by workflow experts. Thus, the presented approach is very well suited for automatically adapting workflows in intelligent environments and can in that way increase the efficiency of the workflow execution. © 2011 IEEE.
Resumo:
La reproducibilidad de estudios y resultados científicos es una meta a tener en cuenta por cualquier científico a la hora de publicar el producto de una investigación. El auge de la ciencia computacional, como una forma de llevar a cabo estudios empíricos haciendo uso de modelos matemáticos y simulaciones, ha derivado en una serie de nuevos retos con respecto a la reproducibilidad de dichos experimentos. La adopción de los flujos de trabajo como método para especificar el procedimiento científico de estos experimentos, así como las iniciativas orientadas a la conservación de los datos experimentales desarrolladas en las últimas décadas, han solucionado parcialmente este problema. Sin embargo, para afrontarlo de forma completa, la conservación y reproducibilidad del equipamiento computacional asociado a los flujos de trabajo científicos deben ser tenidas en cuenta. La amplia gama de recursos hardware y software necesarios para ejecutar un flujo de trabajo científico hace que sea necesario aportar una descripción completa detallando que recursos son necesarios y como estos deben de ser configurados. En esta tesis abordamos la reproducibilidad de los entornos de ejecución para flujos de trabajo científicos, mediante su documentación usando un modelo formal que puede ser usado para obtener un entorno equivalente. Para ello, se ha propuesto un conjunto de modelos para representar y relacionar los conceptos relevantes de dichos entornos, así como un conjunto de herramientas que hacen uso de dichos módulos para generar una descripción de la infraestructura, y un algoritmo capaz de generar una nueva especificación de entorno de ejecución a partir de dicha descripción, la cual puede ser usada para recrearlo usando técnicas de virtualización. Estas contribuciones han sido aplicadas a un conjunto representativo de experimentos científicos pertenecientes a diferentes dominios de la ciencia, exponiendo cada uno de ellos diferentes requisitos hardware y software. Los resultados obtenidos muestran la viabilidad de propuesta desarrollada, reproduciendo de forma satisfactoria los experimentos estudiados en diferentes entornos de virtualización. ABSTRACT Reproducibility of scientific studies and results is a goal that every scientist must pursuit when announcing research outcomes. The rise of computational science, as a way of conducting empirical studies by using mathematical models and simulations, have opened a new range of challenges in this context. The adoption of workflows as a way of detailing the scientific procedure of these experiments, along with the experimental data conservation initiatives that have been undertaken during last decades, have partially eased this problem. However, in order to fully address it, the conservation and reproducibility of the computational equipment related to them must be also considered. The wide range of software and hardware resources required to execute a scientific workflow implies that a comprehensive description detailing what those resources are and how they are arranged is necessary. In this thesis we address the issue of reproducibility of execution environments for scientific workflows, by documenting them in a formalized way, which can be later used to obtain and equivalent one. In order to do so, we propose a set of semantic models for representing and relating the relevant information of those environments, as well as a set of tools that uses these models for generating a description of the infrastructure, and an algorithmic process that consumes these descriptions for deriving a new execution environment specification, which can be enacted into a new equivalent one using virtualization solutions. We apply these three contributions to a set of representative scientific experiments, belonging to different scientific domains, and exposing different software and hardware requirements. The obtained results prove the feasibility of the proposed approach, by successfully reproducing the target experiments under different virtualization environments.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. This has motivated many initiatives that have been developing scientific workflow tools. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from workflow tasks specification, decentralizing the control of workflow activities, and allowing their tasks to run autonomous in distributed infrastructures, for instance on Clouds. Furthermore many workflow tools only support the execution of Direct Acyclic Graphs (DAG) without the concept of iterations, where activities are executed millions of iterations during long periods of time and supporting dynamic workflow reconfigurations after certain iteration. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on the Process Networks model, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures, e. g. on Clouds. Each AWA executes a Task developed as a Java class that implements a generic interface allowing end-users to code their applications without concerns for low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables support to dynamic workflow reconfiguration and monitoring of the execution of workflows. We describe how AWARD supports dynamic reconfiguration and discuss typical workflow reconfiguration scenarios. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to a small dedicated cluster and the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from tasks specification, decentralizing the control of workflow activities allowing their tasks to run in distributed infrastructures, and supporting dynamic workflow reconfigurations. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on Process Networks, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures. Each AWA executes a task developed as a Java class with a generic interface allowing end-users to code their applications without low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables dynamic workflow reconfiguration. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Thesis submitted in fulfilment of the requirements for the Degree of Master of Science in Computer Science
Resumo:
Workflow management systems aim at the controlled execution of complex application processes in distributed and heterogeneous environments. These systems will shape the structure of information systems in business and non-business environments. E business and system integration is a fertile soil for WF and groupware tools. This thesis aims to study WF and groupware tools in order to gather in house knowledge of WF to better utilize WF solutions in future, and to focus on SAP Business Workflow in order to find a global solution for Application Link Enabling support for system integration. Piloting this solution in Nokia collects the experience of SAP R/3 WF tool for other development projects in future. The literary part of this study will guide to the world of business process automation providing a general description of the history, use and potentials of WF & groupware software. The empirical part of this study begins with the background of the case study describing the IT environment initiating the case by introducing SAP R/3 in Nokia, the communication technique in use and WF tool. Case study is focused in one solution with SAP Business Workflow. This study provides a concept to monitor communication between ERP systems and to increase the quality of system integration. Case study describes a way create support model for ALE/EDI interfaces. Support model includes monitoring organization and the workflow processes to solve the most common IDoc related errors.
Resumo:
In the Biodiversity World (BDW) project we have created a flexible and extensible Web Services-based Grid environment for biodiversity researchers to solve problems in biodiversity and analyse biodiversity patterns. In this environment, heterogeneous and globally distributed biodiversity-related resources such as data sets and analytical tools are made available to be accessed and assembled by users into workflows to perform complex scientific experiments. One such experiment is bioclimatic modelling of the geographical distribution of individual species using climate variables in order to predict past and future climate-related changes in species distribution. Data sources and analytical tools required for such analysis of species distribution are widely dispersed, available on heterogeneous platforms, present data in different formats and lack interoperability. The BDW system brings all these disparate units together so that the user can combine tools with little thought as to their availability, data formats and interoperability. The current Web Servicesbased Grid environment enables execution of the BDW workflow tasks in remote nodes but with a limited scope. The next step in the evolution of the BDW architecture is to enable workflow tasks to utilise computational resources available within and outside the BDW domain. We describe the present BDW architecture and its transition to a new framework which provides a distributed computational environment for mapping and executing workflows in addition to bringing together heterogeneous resources and analytical tools.
Resumo:
This paper describes an infrastructure for the automated evaluation of semantic technologies and, in particular, semantic search technologies. For this purpose, we present an evaluation framework which follows a service-oriented approach for evaluating semantic technologies and uses the Business Process Execution Language (BPEL) to define evaluation workflows that can be executed by process engines. This framework supports a variety of evaluations, from different semantic areas, including search, and is extendible to new evaluations. We show how BPEL addresses this diversity as well as how it is used to solve specific challenges such as heterogeneity, error handling and reuse