810 resultados para Word and object behaviorism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O trabalho consiste em uma tentativa de refutação do princípio quineano da indeterminação da tradução radical. A estrutura do argumento é a seguinte. A demonstração do princípio no texto de Quine assenta-se sobre certa concepção do processo de tradução radical. Esta concepção só se sustenta se são adotadas certas pressuposições a respeito da natureza da linguagem e dos falantes. Entretanto, se estas pressuposições são adotadas, não há razão para não se aceitarem também outras pressuposições - as quais invalidam a demonstração de Quine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tutkielma käsittelee nykyisiä kognitiotieteen teorioita käsitteistä ja niiden mallintamista oliokeskeisillä tietämyksen esittämisen menetelmillä. Käsiteteorioista käsitellään klassinen, määritelmäteoria, prototyyppiteoria, duaaliteoriat, uusklassinen teoria, teoria-teoria ja atomistinen teoria. Oliokeskeiset menetelmät ovat viime aikoina jakautuneet kahden tyyppisiin kieliin: oliopohjaisiin ja luokkapohjaisiin. Uudet olio-pohjaiset olio-ohjelmointikielet antavat käsitteiden representointiin mahdollisuuksia, jotka puuttuvat aikaisemmista luokka-pohjaisista kielistä ja myös kehysmenetelmistä. Tutkielma osoittaa, että oliopohjaisten kielten uudet piirteet tarjoavat keinoja, joilla käsitteitä voidaan esittää symbolisessa muodossa paremmin kuin perinteisillä menetelmillä. Niillä pystytään simuloimaan kaikkea mitä luokkapohjaisilla kielillä voidaan, mutta ne pystyvät lisäksi simuloimaan perheyhtäläisyyskäsitteitä ja mahdollistavat olioiden dynaamisen muuttamisen ilman, että siinä rikotaan psykologisen essentialismin periaatetta. Tutkielma osoittaa lisäksi vakavia puutteitta, jotka koskevat koko oliokeskeistä menetelmää. Avainsanat: käsitteet, käsiteteoriat, tekoäly, komputationaalinen psykologia, olio-ohjelmointi, tiedon esittäminen

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While navigating in an environment, a vision system has to be able to recognize where it is and what the main objects in the scene are. In this paper we present a context-based vision system for place and object recognition. The goal is to identify familiar locations (e.g., office 610, conference room 941, Main Street), to categorize new environments (office, corridor, street) and to use that information to provide contextual priors for object recognition (e.g., table, chair, car, computer). We present a low-dimensional global image representation that provides relevant information for place recognition and categorization, and how such contextual information introduces strong priors that simplify object recognition. We have trained the system to recognize over 60 locations (indoors and outdoors) and to suggest the presence and locations of more than 20 different object types. The algorithm has been integrated into a mobile system that provides real-time feedback to the user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How do humans use predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, a certain combination of objects can define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. A neural model, ARTSCENE Search, is developed to illustrate the neural mechanisms of such memory-based contextual learning and guidance, and to explain challenging behavioral data on positive/negative, spatial/object, and local/distant global cueing effects during visual search. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined by enhancing target-like objects in space as a scene is scanned with saccadic eye movements. The model clarifies the functional roles of neuroanatomical, neurophysiological, and neuroimaging data in visual search for a desired goal object. In particular, the model simulates the interactive dynamics of spatial and object contextual cueing in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortical cells (area 46) prime possible target locations in posterior parietal cortex based on goalmodulated percepts of spatial scene gist represented in parahippocampal cortex, whereas model ventral prefrontal cortical cells (area 47/12) prime possible target object representations in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex. The model hereby predicts how the cortical What and Where streams cooperate during scene perception, learning, and memory to accumulate evidence over time to drive efficient visual search of familiar scenes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual search data are given a unified quantitative explanation by a model of how spatial maps in the parietal cortex and object recognition categories in the inferotemporal cortex deploy attentional resources as they reciprocally interact with visual representations in the prestriate cortex. The model visual representations arc organized into multiple boundary and surface representations. Visual search in the model is initiated by organizing multiple items that lie within a given boundary or surface representation into a candidate search grouping. These items arc compared with object recognition categories to test for matches or mismatches. Mismatches can trigger deeper searches and recursive selection of new groupings until a target object io identified. This search model is algorithmically specified to quantitatively simulate search data using a single set of parameters, as well as to qualitatively explain a still larger data base, including data of Aks and Enns (1992), Bravo and Blake (1990), Chellazzi, Miller, Duncan, and Desimone (1993), Egeth, Viri, and Garbart (1984), Cohen and Ivry (1991), Enno and Rensink (1990), He and Nakayarna (1992), Humphreys, Quinlan, and Riddoch (1989), Mordkoff, Yantis, and Egeth (1990), Nakayama and Silverman (1986), Treisman and Gelade (1980), Treisman and Sato (1990), Wolfe, Cave, and Franzel (1989), and Wolfe and Friedman-Hill (1992). The model hereby provides an alternative to recent variations on the Feature Integration and Guided Search models, and grounds the analysis of visual search in neural models of preattentive vision, attentive object learning and categorization, and attentive spatial localization and orientation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gemstone Team Vision