836 resultados para Word Sense Disambiguation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new high precision focused word sense disambiguation (WSD) approach is proposed, which not only attempts to identify the proper sense for a word but also provides the probabilistic evaluation for the identification confidence at the same time. A novel Instance Knowledge Network (IKN) is built to generate and maintain semantic knowledge at the word, type synonym set and instance levels. Related algorithms based on graph matching are developed to train IKN with probabilistic knowledge and to use IKN for probabilistic word sense disambiguation. Based on the Senseval-3 all-words task, we run extensive experiments to show the performance enhancements in different precision ranges and the rationality of probabilistic based automatic confidence evaluation of disambiguation. We combine our WSD algorithm with five best WSD algorithms in senseval-3 all words tasks. The results show that the combined algorithms all outperform the corresponding algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying the correct sense of a word in context is crucial for many tasks in natural language processing (machine translation is an example). State-of-the art methods for Word Sense Disambiguation (WSD) build models using hand-crafted features that usually capturing shallow linguistic information. Complex background knowledge, such as semantic relationships, are typically either not used, or used in specialised manner, due to the limitations of the feature-based modelling techniques used. On the other hand, empirical results from the use of Inductive Logic Programming (ILP) systems have repeatedly shown that they can use diverse sources of background knowledge when constructing models. In this paper, we investigate whether this ability of ILP systems could be used to improve the predictive accuracy of models for WSD. Specifically, we examine the use of a general-purpose ILP system as a method to construct a set of features using semantic, syntactic and lexical information. This feature-set is then used by a common modelling technique in the field (a support vector machine) to construct a classifier for predicting the sense of a word. In our investigation we examine one-shot and incremental approaches to feature-set construction applied to monolingual and bilingual WSD tasks. The monolingual tasks use 32 verbs and 85 verbs and nouns (in English) from the SENSEVAL-3 and SemEval-2007 benchmarks; while the bilingual WSD task consists of 7 highly ambiguous verbs in translating from English to Portuguese. The results are encouraging: the ILP-assisted models show substantial improvements over those that simply use shallow features. In addition, incremental feature-set construction appears to identify smaller and better sets of features. Taken together, the results suggest that the use of ILP with diverse sources of background knowledge provide a way for making substantial progress in the field of WSD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex networks have been employed to model many real systems and as a modeling tool in a myriad of applications. In this paper, we use the framework of complex networks to the problem of supervised classification in the word disambiguation task, which consists in deriving a function from the supervised (or labeled) training data of ambiguous words. Traditional supervised data classification takes into account only topological or physical features of the input data. On the other hand, the human (animal) brain performs both low- and high-level orders of learning and it has facility to identify patterns according to the semantic meaning of the input data. In this paper, we apply a hybrid technique which encompasses both types of learning in the field of word sense disambiguation and show that the high-level order of learning can really improve the accuracy rate of the model. This evidence serves to demonstrate that the internal structures formed by the words do present patterns that, generally, cannot be correctly unveiled by only traditional techniques. Finally, we exhibit the behavior of the model for different weights of the low- and high-level classifiers by plotting decision boundaries. This study helps one to better understand the effectiveness of the model. Copyright (C) EPLA, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La Word Sense Disambiguation è un problema informatico appartenente al campo di studi del Natural Language Processing, che consiste nel determinare il senso di una parola a seconda del contesto in cui essa viene utilizzata. Se un processo del genere può apparire banale per un essere umano, può risultare d'altra parte straordinariamente complicato se si cerca di codificarlo in una serie di istruzioni esguibili da una macchina. Il primo e principale problema necessario da affrontare per farlo è quello della conoscenza: per operare una disambiguazione sui termini di un testo, un computer deve poter attingere da un lessico che sia il più possibile coerente con quello di un essere umano. Sebbene esistano altri modi di agire in questo caso, quello di creare una fonte di conoscenza machine-readable è certamente il metodo che permette di affrontare il problema in maniera più diretta. Nel corso di questa tesi si cercherà, come prima cosa, di spiegare in cosa consiste la Word Sense Disambiguation, tramite una descrizione breve ma il più possibile dettagliata del problema. Nel capitolo 1 esso viene presentato partendo da alcuni cenni storici, per poi passare alla descrizione dei componenti fondamentali da tenere in considerazione durante il lavoro. Verranno illustrati concetti ripresi in seguito, che spaziano dalla normalizzazione del testo in input fino al riassunto dei metodi di classificazione comunemente usati in questo campo. Il capitolo 2 è invece dedicato alla descrizione di BabelNet, una risorsa lessico-semantica multilingua di recente costruzione nata all'Università La Sapienza di Roma. Verranno innanzitutto descritte le due fonti da cui BabelNet attinge la propria conoscenza, WordNet e Wikipedia. In seguito saranno illustrati i passi della sua creazione, dal mapping tra le due risorse base fino alla definizione di tutte le relazioni che legano gli insiemi di termini all'interno del lessico. Infine viene proposta una serie di esperimenti che mira a mettere BabelNet su un banco di prova, prima per verificare la consistenza del suo metodo di costruzione, poi per confrontarla, in termini di prestazioni, con altri sistemi allo stato dell'arte sottoponendola a diversi task estrapolati dai SemEval, eventi internazionali dedicati alla valutazione dei problemi WSD, che definiscono di fatto gli standard di questo campo. Nel capitolo finale vengono sviluppate alcune considerazioni sulla disambiguazione, introdotte da un elenco dei principali campi applicativi del problema. Vengono in questa sede delineati i possibili sviluppi futuri della ricerca, ma anche i problemi noti e le strade recentemente intraprese per cercare di portare le prestazioni della Word Sense Disambiguation oltre i limiti finora definiti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este trabajo se presenta un método para la detección de subjetividad a nivel de oraciones basado en la desambiguación subjetiva del sentido de las palabras. Para ello se extiende un método de desambiguación semántica basado en agrupamiento de sentidos para determinar cuándo las palabras dentro de la oración están siendo utilizadas de forma subjetiva u objetiva. En nuestra propuesta se utilizan recursos semánticos anotados con valores de polaridad y emociones para determinar cuándo un sentido de una palabra puede ser considerado subjetivo u objetivo. Se presenta un estudio experimental sobre la detección de subjetividad en oraciones, en el cual se consideran las colecciones del corpus MPQA y Movie Review Dataset, así como los recursos semánticos SentiWordNet, Micro-WNOp y WordNet-Affect. Los resultados obtenidos muestran que nuestra propuesta contribuye de manera significativa en la detección de subjetividad.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work is based on the assumption that words with similar syntactic usage have similar meaning, which was proposed by Zellig S. Harris (1954,1968). We study his assumption from two aspects: Firstly, different meanings (word senses) of a word should manifest themselves in different usages (contexts), and secondly, similar usages (contexts) should lead to similar meanings (word senses). If we start with the different meanings of a word, we should be able to find distinct contexts for the meanings in text corpora. We separate the meanings by grouping and labeling contexts in an unsupervised or weakly supervised manner (Publication 1, 2 and 3). We are confronted with the question of how best to represent contexts in order to induce effective classifiers of contexts, because differences in context are the only means we have to separate word senses. If we start with words in similar contexts, we should be able to discover similarities in meaning. We can do this monolingually or multilingually. In the monolingual material, we find synonyms and other related words in an unsupervised way (Publication 4). In the multilingual material, we ?nd translations by supervised learning of transliterations (Publication 5). In both the monolingual and multilingual case, we first discover words with similar contexts, i.e., synonym or translation lists. In the monolingual case we also aim at finding structure in the lists by discovering groups of similar words, e.g., synonym sets. In this introduction to the publications of the thesis, we consider the larger background issues of how meaning arises, how it is quantized into word senses, and how it is modeled. We also consider how to define, collect and represent contexts. We discuss how to evaluate the trained context classi?ers and discovered word sense classifications, and ?nally we present the word sense discovery and disambiguation methods of the publications. This work supports Harris' hypothesis by implementing three new methods modeled on his hypothesis. The methods have practical consequences for creating thesauruses and translation dictionaries, e.g., for information retrieval and machine translation purposes. Keywords: Word senses, Context, Evaluation, Word sense disambiguation, Word sense discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Word Sense Disambiguation, the process of identifying the meaning of a word in a sentence when the word has multiple meanings, is a critical problem of machine translation. It is generally very difficult to select the correct meaning of a word in a sentence, especially when the syntactical difference between the source and target language is big, e.g., English-Korean machine translation. To achieve a high level of accuracy of noun sense selection in machine translation, we introduced a statistical method based on co-occurrence relation of words in sentences and applied it to the English-Korean machine translator RyongNamSan. ACM Computing Classification System (1998): I.2.7.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Word sense disambiguation is the task of determining which sense of a word is intended from its context. Previous methods have found the lack of training data and the restrictiveness of dictionaries' choices of senses to be major stumbling blocks. A robust novel algorithm is presented that uses multiple dictionaries, the Internet, clustering and triangulation to attempt to discern the most useful senses of a given word and learn how they can be disambiguated. The algorithm is explained, and some promising sample results are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The automatic disambiguation of word senses (i.e., the identification of which of the meanings is used in a given context for a word that has multiple meanings) is essential for such applications as machine translation and information retrieval, and represents a key step for developing the so-called Semantic Web. Humans disambiguate words in a straightforward fashion, but this does not apply to computers. In this paper we address the problem of Word Sense Disambiguation (WSD) by treating texts as complex networks, and show that word senses can be distinguished upon characterizing the local structure around ambiguous words. Our goal was not to obtain the best possible disambiguation system, but we nevertheless found that in half of the cases our approach outperforms traditional shallow methods. We show that the hierarchical connectivity and clustering of words are usually the most relevant features for WSD. The results reported here shed light on the relationship between semantic and structural parameters of complex networks. They also indicate that when combined with traditional techniques the complex network approach may be useful to enhance the discrimination of senses in large texts. Copyright (C) EPLA, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, there has been an increas-ing interest in learning a distributed rep-resentation of word sense. Traditional context clustering based models usually require careful tuning of model parame-ters, and typically perform worse on infre-quent word senses. This paper presents a novel approach which addresses these lim-itations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned represen-tations outperform the publicly available embeddings on 2 out of 4 metrics in the word similarity task, and 6 out of 13 sub tasks in the analogical reasoning task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article explores two matrix methods to induce the ``shades of meaning" (SoM) of a word. A matrix representation of a word is computed from a corpus of traces based on the given word. Non-negative Matrix Factorisation (NMF) and Singular Value Decomposition (SVD) compute a set of vectors corresponding to a potential shade of meaning. The two methods were evaluated based on loss of conditional entropy with respect to two sets of manually tagged data. One set reflects concepts generally appearing in text, and the second set comprises words used for investigations into word sense disambiguation. Results show that for NMF consistently outperforms SVD for inducing both SoM of general concepts as well as word senses. The problem of inducing the shades of meaning of a word is more subtle than that of word sense induction and hence relevant to thematic analysis of opinion where nuances of opinion can arise.