833 resultados para Wear Particles
Resumo:
Fine particulate matter from traffic increases mortality and morbidity. An important source of traffic particles is brake wear. American studies reported cars to emit break wear particles at a rate of about 11mg/km to 20mg/km of driven distance. A German study estimated that break wear contributes about 12.5% to 21% of the total traffic particle emissions. The goal of this study was to build a system that allows the study of brake wear particle emissions during different braking behaviours of different car and brake types. The particles should be characterize in terms of size, number, metal, and elemental and organic carbon composition. In addition, the influence of different deceleration schemes on the particle composition and size distribution should be studied. Finally, this system should allow exposing human cell cultures to these particles. An exposure-box (0.25 cubic-m volume) was built that can be mounted around a car's braking system. This allows exposing cells to fresh brake wear particles. Concentrations of particle numbers, mass and surface, metals, and carbon compounds were quantified. Tests were conducted with A549 lung epithelial cells. Five different cars and two typical braking behaviours (full stop and normal deceleration) were tested. Particle number and size distribution was analysed for the first six minutes. In this time, two braking events occurred. Full stop produced significantly higher particle concentrations than normal deceleration (average of 23'000 vs. 10'400 #/cm3, p= 0.016). The particle number distribution was bi-modal with one peak at 60 to 100 nm (depending on the tested car and braking behaviour) and a second peak at 200 to 400 nm. Metal concentrations varied depending on the tested car type. Iron (range of 163 to 15'600 μg/m3) and Manganese (range of 0.9 to 135 μg/m3) were present in all samples, while Copper was absent in some samples (<6 to 1220 μg/m3). The overall "fleet" metal ratio was Fe:Cu:Mn = 128:14:1. Temperature and humidity varied little. A549-cells were successfully exposed in the various experimental settings and retained their viability. Culture supernatant was stored and cell culture samples were fixated to test for inflammatory response. Analysis of these samples is ongoing. The established system allowed testing brake wear particle emissions from real-world cars. The large variability of chemical composition and emitted amounts of brake wear particles between car models seems to be related to differences between brake pad compositions of different producers. Initial results suggest that the conditions inside the exposure box allow exposing human lung epithelial cells to freshly produced brake wear particles.
Resumo:
Background: Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles. Results: An exposure box was mounted around a car's braking system. Lung cells cultured at the air-liquid interface were then exposed to particles emitted from two typical braking behaviours ("full stop" and "normal deceleration"). The particle size distribution as well as the brake emission components like metals and carbons was measured on-line, and the particles deposited on grids for transmission electron microscopy were counted. The tight junction arrangement was observed by laser scanning microscopy. Cellular responses were assessed by measurement of lactate dehydrogenase (cytotoxicity), by investigating the production of reactive oxidative species and the release of the pro-inflammatory mediator interleukin-8. The tight junction protein occludin density decreased significantly (p < 0.05) with increasing concentrations of metals on the particles (iron, copper and manganese, which were all strongly correlated with each other). Occludin was also negatively correlated with the intensity of reactive oxidative species. The concentrations of interleukin-8 were significantly correlated with increasing organic carbon concentrations. No correlation was observed between occludin and interleukin-8, nor between reactive oxidative species and interleukin-8. Conclusion: These findings suggest that the metals on brake wear particles damage tight junctions with a mechanism involving oxidative stress. Brake wear particles also increase pro-inflammatory responses. However, this might be due to another mechanism than via oxidative stress. [Authors]
Resumo:
Brake wear dust is a significant component of traffic emissions and has been linked to adverse health effects. Previous research found a strong oxidative stress response in cells exposed to freshly generated brake wear dust. We characterized aged dust collected from passenger vehicles, using microscopy and elemental analyses. Reactive oxygen species (ROS) generation was measured with acellular and cellular assays using 2′7-dichlorodihydrofluorescein dye. Microscopy analyses revealed samples to be heterogeneous particle mixtures with few nanoparticles detected. Several metals, primarily iron and copper, were identified. High oxygen concentrations suggested that the elements were oxidized. ROS were detected in the cell-free fluorescent test, while exposed cells were not dramatically activated by the concentrations used. The fact that aged brake wear samples have lower oxidative stress potential than fresh ones may relate to the highly oxidized or aged state of these particles, as well as their larger size and smaller reactive surface area.
Resumo:
Purpose - The purpose of the paper is to provide information on wear debris on oil and vibration analysis as predictive maintenance techniques in reducer. Design/methodology/approach - The estate of a reducer is verified by analyzing the vibration and oil conditions of a test rig under well-designed conditions utilizing some predictive variables. Findings - According to the vibration and oil analysis it is found out what it was happening into the reducer without disassembling it. Practical implications - This paper demonstrates the use of oil debris analysis and vibration analysis as a technique that enhances preventive maintenance practices. The paper helps practitioners to utilize these techniques more effectively. Originality/value - This paper gives information about two predictive maintenance techniques with a test rig. © Emerald Group Publishing Limited.
Resumo:
Purpose - This paper aims to provide information on wear debris on oil and vibration analysis as predictive maintenance techniques. Design/methodology/ approach - The estate of a reducer is verified by analyzing the vibration and oil conditions of a test rig under some variables. Findings - According to the vibration and oil analysis it was found what was happening in the reducer without disassembling it. Originality/value - This paper gives information about two predictive maintenance techniques with a test rig. © Emerald Group Publishing Limited.
Resumo:
ABSTRACT: BACKGROUND: Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles. RESULTS: An exposure box was mounted around a car's braking system. Lung cells cultured at the air-liquid interface were then exposed to particles emitted from two typical braking behaviours ("full stop" and "normal deceleration"). The particle size distribution as well as the brake emission components like metals and carbons was measured on-line, and the particles deposited on grids for transmission electron microscopy were counted. The tight junction arrangement was observed by laser scanning microscopy. Cellular responses were assessed by measurement of lactate dehydrogenase (cytotoxicity), by investigating the production of reactive oxidative species and the release of the pro-inflammatory mediator interleukin-8. The tight junction protein occludin density decreased significantly (p < 0.05) with increasing concentrations of metals on the particles (iron, copper and manganese, which were all strongly correlated with each other). Occludin was also negatively correlated with the intensity of reactive oxidative species. The concentrations of interleukin-8 were significantly correlated with increasing organic carbon concentrations. No correlation was observed between occludin and interleukin-8, nor between reactive oxidative species and interleukin-8. CONCLUSION: These findings suggest that the metals on brake wear particles damage tight junctions with a mechanism involving oxidative stress. Brake wear particles also increase pro-inflammatory responses. However, this might be due to another mechanism than via oxidative stress.
Resumo:
Prosthetic and osteosynthetic implants from metal alloys will be indispensable in orthopedic surgery, as long as tissue engineering and biodegradable bone substitutes do not lead to products that will be applied in clinical routine for the repair of bone, cartilage, and joint defects. Therefore, the elucidation of the interactions between the periprosthetic tissues and the implant remains of clinical relevance and several factors are known to affect the longevity of implants. Within this study, the effects of metal particles and surface topography on the recruitment of osteoclasts was investigated in vitro in a coculture of osteoblasts and bone marrow cells. The cells were grown in the presence of particles of different sizes and chemical composition or on metal discs with polished or sandblasted surfaces, respectively. At the end of the culture, newly formed osteoclasts were counted. Osteoclastogenesis was reduced when particles were added directly to the coculture. The effect depended on the size of the particles, small particles exerting stronger effects than larger ones. The chemical composition of the particles, however, did not affect the development of osteoclasts. In cocultures grown on sandblasted surfaces, osteoclasts developed at higher rates than they did in cultures on polished surfaces. The data demonstrate that wear particles and implant surfaces affect osteoclastogenesis and thus may be involved in the induction of local bone resorption and the formation of osteolytic lesions, leading eventually to the loosening of orthopedic implants.
Resumo:
Road transport emissions are a major contributor to ambient particulate matter concentrations and have been associated with adverse health effects. Therefore, these emissions are targeted through increasingly stringent European emission standards. These policies succeed in reducing exhaust emissions, but do not address "nonexhaust" emissions from brake wear, tire wear, road wear, and suspension in air of road dust. Is this a problem? To what extent do nonexhaust emissions contribute to ambient concentrations of PM10 or PM2.5? In the near future, wear emissions may dominate the remaining traffic-related PM10 emissions in Europe, mostly due to the steep decrease in PM exhaust emissions. This underlines the need to determine the relevance of the wear emissions as a contribution to the existing ambient PM concentrations, and the need to assess the health risks related to wear particles, which has not yet received much attention. During a workshop in 2011, available knowledge was reported and evaluated so as to draw conclusions on the relevance of traffic-related wear emissions for air quality policy development. On the basis of available evidence, which is briefly presented in this paper, it was concluded that nonexhaust emissions and in particular suspension in air of road dust are major contributors to exceedances at street locations of the PM10 air quality standards in various European cities. Furthermore, wear-related PM emissions that contain high concentrations of metals may (despite their limited contribution to the mass of nonexhaust emissions) cause significant health risks for the population, especially those living near intensely trafficked locations. To quantify the existing health risks, targeted research is required on wear emissions, their dispersion in urban areas, population exposure, and its effects on health. Such information will be crucial for environmental policymakers as an input for discussions on the need to develop control strategies.
Resumo:
This paper describes a method of identifying morphological attributes that classify wear particles in relation to the wear process from which they originate and permit the automatic identification without human expertise. The method is based on the use of Multi Layer Perceptron (MLP) for analysis of specific types of microscopic wear particles. The classification of the wear particles was performed according to their morphological attributes of size and aspect ratio, among others. (C) 2010 Journal of Mechanical Engineering. All rights reserved.
Resumo:
This paper describes the development of a mechatronic system for a predictive maintenance grounded on wear particle analysis. The reckoning of wear particles containing in lubricating industrial oils brings the image acquisition system into being. The ISO 4406:1999 standard is a guide to establish the counting and evaluation processes of particles. The system applied to the acquisition and analysis of the data consists of a digital camera, a monocular microscope and an oil filtering system. A computational program was developed with the application of Visual Microsoft C++ in a way to detain the oil sample image from the microscope slide to the computer screen. Quantitative analyses of the wear debris particles bulk are exploited applying a graphical interface that was developed to render the image processing of the sample test. The implemented system has a reachable cost thus it can be applied for schooling goals and for bolstering laboratories of minor industries and medium size companies.
Resumo:
Reuse of tire crumb in sport facilities is currently a very cost-effective waste management measure. Considering that incorporation of the waste materials in artificial turf would be facilitated if the rubber materials were already colored green, coatings were specifically developed for this purpose. This paper presents an experimental toxicological and environmental assessment aimed at comparing the obtained emissions to the environment in terms of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and ecotoxicity for coated and noncoated rubber granulates. This study is a comprehensive evaluation of the major potential critical factors related with the release of all of these classes of pollutants because previous studies were not systematically performed. It was concluded that between the two types of coatings tested, one is particularly effective in reducing emissions to the environment, simultaneously meeting the requirements of adherence and color stability.
Resumo:
Reuse of tire crumb in sport facilities is currently a very cost-effective waste management measure. Considering that incorporation of the waste materials in artificial turf would be facilitated if the rubber materials were already colored green, coatings were specifically developed for this purpose. This paper presents an experimental toxicological and environmental assessment aimed at comparing the obtained emissions to the environment in terms of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and ecotoxicity for coated and noncoated rubber granulates. This study is a comprehensive evaluation of the major potential critical factors related with the release of all of these classes of pollutants because previous studies were not systematically performed. It was concluded that between the two types of coatings tested, one is particularly effective in reducing emissions to the environment, simultaneously meeting the requirements of adherence and color stability.
Resumo:
Avarias em rolamentos são causas comuns de falhas em máquinas e equipamentos industriais. Portanto, é importante a aplicação de técnicas que permitam a deteção e a identificação do problema o mais cedo possível a fim de evitar a destruição do rolamento e consequente paragem da máquina. Logo, o processo de monitorização do estado dos rolamentos deve receber uma atenção especial no plano de manutenção de qualquer indústria. Este trabalho tem, assim, como principal objetivo a caracterização das partículas de desgaste provenientes de rolamentos através da análise dos seus lubrificantes por ferrometria e ferrografia analítica. Estas técnicas permitem identificar e caracterizar as várias partículas de desgaste presentes numa amostra de lubrificante, permitindo não só avaliar o grau de severidade do desgaste mas também identificar o tipo de desgaste predominante (fadiga, abrasão, corrosão,etc.), e até identificar os diferentes materiais das partículas que se podem associar a componentes específicos com falhas. A criação de uma base de dados para armazenar os resultados, os comentários e as informações mais importantes obtidos nos ensaios experimentais, assim como a análise de alguns casos práticos, foram também realizados no âmbito deste trabalho. Para desenvolver um conhecimento mais profundo sobre as técnicas utilizadas foi importante fazer uma análise aos diversos tipos de rolamentos, a sua lubrificação e as causas e tipos principais de avarias encontradas.
Resumo:
Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.