976 resultados para WATER-MOLECULES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed mechanisms for the formation of hydroxyl or alkoxyl radicals in the reactions between tetrachloro-p-benzoquinone (TCBQ) and organic hydroperoxides are crucial for better understanding the potential carcinogenicity of polyhalogenated quinones. Herein, the mechanism of the reaction between TCBQ and H2O2 has been systematically investigated at the B3LYP/6-311++G** level of theory in the presence of different numbers of water molecules. We report that the whole reaction can easily take place with the assistance of explicit water molecules. Namely, an initial intermediate is formed first. After that, a nucleophilic attack of H2O2 onto TCBQ occurs, which results in the formation of a second intermediate that contains an OOH group. Subsequently, this second intermediate decomposes homolytically through cleavage of the O-O bond to produce a hydroxyl radical. Energy analyses suggest that the nucleophilic attack is the rate-determining step in the whole reaction. The participation of explicit water molecules promotes the reaction significantly, which can be used to explain the experimental phenomena. In addition, the effects of F, Br, and CH3 substituents on this reaction have also been studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used molecular dynamics (MD) simulations to study the reorientational dynamics of water molecules confined inside narrow carbon nanotubes immersed in a bath of water. Our simulations show that the confined water molecules exhibit bistability in their reorientational relaxation, which proceeds by angular jumps between the two stable states. The angular jump of a water molecule in the bulk involves the breaking of a hydrogen bond with one of its neighbors and the formation of a hydrogen bond with a different neighbor. In contrast, the angular jump of a confined water molecule corresponds to an interchange of the two hydrogen atoms that can form a hydrogen bond with the same neighbor. The free energy barrier between these two states is a few k(B)T. The analytic solution of a simplified two-state jump model that qualitatively explains the reorientational behavior observed in simulations is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Confinement and Surface specific interactions call induce Structures otherwise unstable at that temperature and pressure. Here we Study the groove specific water dynamics ill the nucleic acid sequences, poly-AT and poly-GC, in long B-DNA duplex chains by large scale atomistic molecular dynamics simulations, accompanied by thermodynamic analysis. While water dynamics in the major groove remains insensitive to the sequence differences, exactly the opposite is true for the minor groove water. Much slower water dynamics observed in the minor grooves (especially in the AT minor) call be attributed to all enhanced tetrahedral ordering (< t(h)>) of water. The largest value of < t(h)> in the AT minor groove is related to the spine of hydration found in X-ray Structure. The calculated configurational entropy (S-C) of the water molecules is found to be correlated with the self-diffusion coefficient of water in different region via Adam-Gibbs relation D = A exp(-B/TSC), and also with < t(h)>.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of the protein atoms with the surrounding water oxygen atoms has been computed for 392 protein chains from 369 protein structures belonging to 90% non-homologous high resolution (<= 1.5 angstrom) protein Structures with a crystallographic R-factor <= 20%. The percentage composition of the polar atoms is found to be 36.3%. An average of 82.55% of water oxygen atoms are found to be in the primary hydration shell and 15.12% in the secondary hydration shell. The average Percentage of interactions of water oxygen atoms with the polar atoms of the main chain and side chain are 54% and 46%. respectively. The interaction of the acidic residues, aspartate and glutamate, with the water oxygen atoms is more when compared to that of the other residues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of water molecules near an aqueous micellar interface is studied in an atomistic molecular dynamics simulation of cesium pentadecafluorooctanoate (CsPFO) in water. The dipolar orientational time correlation function (tcf) and the translational diffusion of the water molecules are investigated. Results show that both the reorientational and the translational motion of water molecules near the micelle are restricted. In particular, the orientational tcf exhibits a very slow component in the long time which is slower than its bulk value by 2 orders of magnitude. This slow decay seems to be related to the slow decay often observed in experiments. The origin of the slow decay is analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and energetics of interfacial water molecules in the aqueous micelle of cesium perfluorooctanoate have been investigated, using large-scale atomistic molecular dynamics simulations, with the primary objective of classifying them. The simulations show that the water molecules at the interface fall into two broad classes: bound and free, present in a ratio of 9:1. The bound water molecules can be further categorized on the basis of the number of hydrogen bonds (one or two) that they form with the surfactant headgroups. The hydrogen bonds of the doubly hydrogen-bonded species are found to be, on the average, slightly weaker than those in the singly bonded species. The environment around interfacial water molecules is more ordered than that in the bulk. The surface water molecules have substantially lower potential energy, because of interaction with the micelle. In particular, both forms of bound water have energies that are lower by �2.5-4.0 kcal/ mol. Entropy is found to play an important role in determining the relative concentration of the species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free energy barriers separating interfacial water molecules from the hydration layer at the surface of a protein to the bulk are obtained by using the umbrella sampling method of free energy calculation. We consider hydration layer of chicken villin head piece (HP-36) which has been studied extensively by molecular dynamics simulations. The free energy calculations reveal a strong sensitivity to the secondary structure. In particular, we find a region near the junction of first and second helix that contains a cluster of water molecules which are slow in motion, characterized by long residence times (of the order of 100 ps or more) and separated by a large free energy barrier from the bulk water. However, these ``slow'' water molecules constitute only about 5-10% of the total number of hydration layer water molecules. Nevertheless, they play an important role in stabilizing the protein conformation. Water molecules near the third helix (which is the important helix for biological function) are enthalpically least stable and exhibit the fastest dynamics. Interestingly, barrier height distributions of interfacial water are quite broad for water surrounding all the three helices (and the three coils), with the smallest barriers found for those near the helix-3. For the quasi-bound water molecules near the first and second helices, we use well-known Kramers' theory to estimate the residence time from the free energy surface, by estimating the friction along the reaction coordinate from the diffusion coefficient by using Einstein relation. The agreement found is satisfactory. We discuss the possible biological function of these slow, quasi-bound (but transient) water molecules on the surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enzyme, D-xylose isomerase (D-xylose keto-isomerase; EC 5.3.1.5) is a soluble enzyme that catalyzes the conversion of the aldo-sugar D-xylose to the keto-sugar D-xylulose. A total of 27 subunits of D-xylose isomerase from Streptomyces rubiginosus were analyzed in order to identify the invariant water molecules and their water-mediated ionic interactions. A total of 70 water molecules were found to be invariant. The structural and/or functional roles of these water molecules have been discussed. These invariant water molecules and their ionic interactions may be involved in maintaining the structural stability of the enzyme D-xylose isomerase. Fifty-eight of the 70 invariant water molecules (83%) have at least one interaction with the main chain polar atom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various structural, dynamic and thermodynamic properties of water molecules confined in single-wall carbon nanotubes (CNTs) are investigated using both polarizable and non-polarizable water models. The inclusion of polarizability quantitatively affects the nature of hydrogen bonding, which governs many properties of confined water molecules. Polarizable water leads to tighter hydrogen bonding and makes the distance between neighboring water molecules shorter than that for non-polarizable water. Stronger hydrogen bonding also decreases the rotational entropy and makes the diffusion constant smaller than in TIP3P and TIP3PM water models. The reorientational dynamics of the water molecules is governed by a jump mechanism, the barrier for the jump being highest for the polarizable water model. Our results highlight the role of polarizability in governing the dynamics of confined water and demonstrate that the inclusion of polarizability is necessary to obtain agreement with the results of ab initio simulations for the distributions of waiting and jump times. The SPC/E water model is found to predict various water properties in close agreement with the results of polarizable water models with much lower computational costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current applications of statistical thermodynamic theories for clathrate hydrates do not incorporate the translational and rotational movement of water molecules of the hydrate lattice,in a rigorous manner. Previous studies have shown that the movement of water molecules has a significant effect on the properties of clathrate hydrates. In this Article, a method is presented to incorporate the effect of water movement with as much rigor as possible. This method is then used to calculate the Langmuir constant of the guest species in a clathrate hydrate. Unlike previous studies on modeling of clathrate hydrate thermodynamics, the method presented in this paper does not regress either the intermolecular potentials or the properties of the empty hydrate from clathrate phase equilibria data. Also the properties of empty hydrate used in the theory do not depend on the nature and composition of the guest molecules. The predicted phase equilibria from the resulting theory are shown to be highly accurate and thermodynamically consistent by comparing them with the phase equilibria computed directly from molecular simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human transthyretin (hTTR) is a multifunctional protein that is involved in several neurodegenerative diseases. Besides the transportation of thyroxin and vitamin A, it is also involved in the proteolysis of apolipoprotein A1 and A beta peptide. Extensive analyses of 32 high-resolution X-ray and neutron diffraction structures of hTTR followed by molecular-dynamics simulation studies using a set of 15 selected structures affirmed the presence of 44 conserved water molecules in its dimeric structure. They are found to play several important roles in the structure and function of the protein. Eight water molecules stabilize the dimeric structure through an extensive hydrogen-bonding network. The absence of some of these water molecules in highly acidic conditions (pH <= 4.0) severely affects the interfacial hydrogen-bond network, which may destabilize the native tetrameric structure, leading to its dissociation. Three pairs of conserved water molecules contribute to maintaining the geometry of the ligand-binding cavities. Some other water molecules control the orientation and dynamics of different structural elements of hTTR. This systematic study of the location, absence, networking and interactions of the conserved water molecules may shed some light on various structural and functional aspects of the protein. The present study may also provide some rational clues about the conserved water-mediated architecture and stability of hTTR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural occurrence of the human telomeric G-quadruplex or i-motif in vivo has not been demonstrated and the biological effects of the induction of these structures need to be clarified. Intracellular environments are highly crowded with various biomolecules and in vitro studies under molecular-crowding conditions will provide important information on how biomolecules behave in cells. Here we report that cell-mimic crowding can increase i-motif stability at acid pH and cause dehydration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new hydrogen-bonded dinuclear copper(II) coordination compound has been synthesized from the Schiff-base ligand 6-(pyridine-2-ylhydrazonomethyl)phenol (Hphp). The molecular structure of [Cu-2(php)(2)(H2O2)(2)(ClO4)](ClO4)- (H2O) (1), determined by single-crystal X-ray diffraction, reveals the presence of two copper(II) centers held together by means of two strong hydrogen bonds, with O center dot O contacts of only 2.60-2.68 angstrom. Temperature-dependent magnetic susceptibility measurements down to 3 K show that the two metal ions are antiferromagnetically coupled (J = -19.8(2) cm(-1)). This exchange is most likely through two hydrogen-bonding pathways, where a coordinated water on the first Cu, donates a H bond to the O atoms of the coordinated php at the other Cu. This strong O center dot H (water) bonding interaction has been clearly evidenced by theoretical calculations. In the relatively few related cases from the literature, this exchange path, mediated by a (neutral) coordinated water molecule, was not recognized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semi-phenomenological molecular model is presented, which is capable of describing with the use of analytical formulae, the wideband dielectric(1) and far-infrared spectra of ordinary and heavy water. In the model the vector of a dipole moment is presented as a sum of two components. The absolute value of the first one is constant; the second one changes harmonically with time. The key aspect of this work is consideration of FIR spectra due to the second component. In the context of the modified hybrid model presented in the work, reorientation of the dipoles in the rectangular potential well is considered, as a result of which the librational (near 700 cm (-1)) and translational (near 200 cm (-1)) absorption bands and the microwave Debye relaxation spectrum arise. It is shown that the time-dependent part of a dipole moment contributes most to the translational band, the relevant mechanism is taken to be stretching vibration of the H-bonded molecules. Previous linear-response molecular models were unsuccessful in describing this band (in heavy water) in terms of the complex dielectric permittivity. The spatial and time scales characteristic of water are estimated. (C) 2002 Elsevier Science B.V. All rights reserved.