853 resultados para Vulnerability sources
Resumo:
Includes bibliography
Resumo:
The objective of this paper was to assess bacteriological quality of drinking water in a peri-urban area located in the Metropolitan Region of São Paulo, Brazil. A total of 89 water samples were collected from community plastic tanks and 177 water samples from wells were collected bimonthly, from September 2007 to November 2008, for evaluating bacteriological parameters including: Escherichia coli, Enterococcus and heterotrophic plate count (HPC). Clostridium perfringens was investigated in a subsample (40 samples from community plastic tank and 40 from wells). E. coli was present in 5 (5.6%) samples from community plastic tanks (2.0 - 5.1x10(4) MPN/100mL) and in 70 (39.5%) well samples (2.0 - 8.6x10(4) MPN/100mL). Thus, these samples were not in accordance with the Brazilian Regulation. Enterococcus was detected in 20 (22.5%) samples of the community plastic tanks (1 to 79 NC/100mL) and in 142 (80.2%) well samples (1 to >200 NC/100mL). C. perfringens was detected in 5 (12.5%) community plastic tanks samples and in 35 (87.5%) wells samples (2.2 to >16 MPN/100mL). HPC were above 500 CFU/mL in 5 (5.6%) waters from community plastic tanks. In wells samples, the HPC ranged from <1 to 1.6x10(4) CFU/mL. The residual chlorine did not attend the standard established in the drinking water legislation (0.2 mg/L), except in 20 (22.5%) samples. These results confirm the vulnerability of the water supply systems in this peri-urban area what is clearly a public health concern.
Resumo:
The vulnerability to pollution and hydrochemical variation of groundwater in the mid-west karstic lowlands of Ireland were investigated from October 1992 to September 1993, as part of an EU STRIDE project at Sligo Regional Technical College. Eleven springs were studied in the three local authority areas of Co. Galway, Co. Mayo, and Co. Roscommon. Nine of the springs drain locally or regionally important karstic aquifers and two drain locally important sand and gravel aquifers. The maximum average daily discharge of any of the springs was 16,000 m3/day. Determination of the vulnerability of groundwater to pollution relies heavily on an examination of subsoil deposits in an area since they can act as a protecting or filtering layer over groundwater. Within aquifers/spring catchments, chemical reactions such as adsorption, solution-precipitation or acid-base reactions occur and modify the hydrochemistry of groundwater (Lloyd and Heathcote, 1985). The hydrochemical processes) that predominate depend cm the mineralogy of the aquifer, the hydrogeological environment, the overlying subsoils, and the history of groundwater movement. The aim of this MSc research thesis was to investigate the hydrochemical variation of spring outflow and to assess the relationship between these variations and the intrinsic vulnerability of the springs and their catchments. If such a relationship can be quantified, then it is hoped that the hydrochemical variation of a spring may indicate the vulnerability of a spring catchment without the need for determining it by field mapping. Such a method would be invaluable to any of the three local authorities since they would be able to prioritise sources that are most at risk from pollution, using simple techniques of chemical sampling, and statistical analysis. For each spring a detailed geological, hydrogeological and hydrochemical study was carried out. Individual catchment areas were determined with a water balance/budget and groundwater tracing. The subsoils geology for each spring catchment were mapped at the 1:10,560 scale and digitised to the 1:25,000 scale with AutoCad™ and Arclnfo™. The vulnerability of each spring was determined using the Geological Survey's vulnerability guidelines. Field measurements and laboratory based chemistry analyses of the springs were undertaken by personnel from both the EPA Regional Laboratory in Castlebar, Co. Mayo, and the Environment Section of Roscommon Co. Council. Electrical conductivity and temperature (°C) were sampled fortnightly, in the field, using a WTW microprocessor conductivity meter. A percentage (%) vulnerability was applied to each spring in order to indicate the areal extent of the four main classes of vulnerability (Extreme, High, Moderate, and Low) which occurred within the confines of each spring catchment. Hydrochemical variation for the springs were presented as the coefficient of variation of electrical conductivity. The results of this study show that a clear relationship exists between the degree of vulnerability of each catchment area as defined by the subsoil cover and the coefficient of variation of EC, with the coefficient of variation increasing as the vulnerability increases. The coefficient of variation of electrical conductivity is considered to be a parameter that gives a good general reflection of the degree of vulnerability occurring in a spring catchment in Ireland's karstic lowlands.
Resumo:
The aim of the project was to determine the extent and quality of the groundwater in Tipperary South Riding with a view to developing a groundwater protection plan which would allow the Local Authority to manage, protect and develop the groundwater as efficiently as possible. The geology of the area varies with topography. The low-lying areas of the county comprise mainly Carboniferous limestones while the elevated regions consist of sandstones and shales of Upper Carboniferous, Devonian and Silurian ages. Deformation of these rocks decreases in magnitude moving northwards over the area; the Southern Synclines having suffered the effects of the Hercynian orogeny and the northern region exhibiting Caledonian orogenic trends. Quaternary (subsoil) deposits are found throughout the area and are of variable thickness and permeability. Till is the most widespread deposit with discontinuous pockets of sand and gravel in various proportions, and some marl, alluvium and peat in places. The principal aquifers of the area are the Kiltorcan sandstone formation and various limestone units within the Carboniferous succession. 50 % of south Tipperary constitutes either regionally or locally important aquifers. Secondary permeabilities created by structural deformation, dolomitisation, karstification and weathering processes create high transmissivities and often have large well yields. Specific baseflow analysis highlighted the complexity of the aquifers and proved that the lower part of the Suir river system is a major groundwater resource region. The hydrochemistry and water quality of the local authority groundwater sources was examined briefly. The majority of south Tipperary is underlain by limestone or Quaternary deposits derived from limestone and, consequently, calcium/magnesium bicarbonate waters predominate. The quality of the groundwater in south Tipperary demonstrates that the main concern originates from the presence of E.coli, and Total coliforms. The primary sources of contamination are from farmyard wastes and septic tanks. The vulnerability of groundwater to diffuse and point sources of pollution has been found to be dependent on the overlying soil, subsoil and the thickness of the unsaturated zone. A conceptual rather than quantitative approach is used and it is found that approximately 60% of south Tipperary is designated as being extremely or highly vulnerable. The groundwater protection plan was devised subsequent to an understanding of the aquifer systems, an assessment of the vulnerability, and a review of the Irish planning system and environmental law. It is recommended that the plan be integrated into the county development plan for legislative purposes. A series of acceptability matrices were devised to restrict potentially polluting activities in vulnerable areas while maintaining a balance between protection of the groundwater resource and the need to site essential developments.
Resumo:
Includes bibliography
Resumo:
Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes, an international specialty conference sponsored by the American Association for Aerosol Research, was held to address key uncertainties in our understanding of adverse health effects related to air pollution and to integrate and disseminate results from recent scientific studies that cut across a range of air pollution-related disciplines. The Conference addressed the science of air pollution and health within a multipollutant framework (herein "multipollutant" refers to gases and particulate matter mass, components, and physical properties), focusing on five key science areas: sources, atmospheric sciences, exposure, dose, and health effects. Eight key policy-relevant science questions integrated across various parts of the five science areas and a ninth question regarding findings that provide policy-relevant insights served as the framework for the meeting. Results synthesized from this Conference provide new evidence, reaffirm past findings, and offer guidance for future research efforts that will continue to incrementally advance the science required for reducing uncertainties in linking sources, air pollutants, human exposure, and health effects. This paper summarizes the Conference findings organized around the science questions. A number of key points emerged from the Conference findings. First, there is a need for greater focus on multipollutant science and management approaches that include more direct studies of the mixture of pollutants from sources with an emphasis on health studies at ambient concentrations. Further, a number of research groups reaffirmed a need for better understanding of biological mechanisms and apparent associations of various health effects with components of particulate matter (PM), such as elemental carbon, certain organic species, ultrafine particles, and certain trace elements such as Ni, V, and Fe(II), as well as some gaseous pollutants. Although much debate continues in this area, generation of reactive oxygen species induced by these and other species present in air pollution and the resulting oxidative stress and inflammation were reiterated as key pathways leading to respiratory and cardiovascular outcomes. The Conference also underscored significant advances in understanding the susceptibility of populations, including the role of genetics and epigenetics and the influence of socioeconomic and other confounding factors and their synergistic interactions with air pollutants. Participants also pointed out that short-and long-term intervention episodes that reduce pollution from sources and improve air quality continue to indicate that when pollution decreases so do reported adverse health effects. In the limited number of cases where specific sources or PM2.5 species were included in investigations, specific species are often associated with the decrease in effects. Other recent advances for improved exposure estimates for epidemiological studies included using new technologies such as microsensors combined with cell phone and integrated into real-time communications, hybrid air quality modeling such as combined receptor-and emission-based models, and surface observations used with remote sensing such as satellite data.
Resumo:
Tajikistan, with 93% of its surface area taken up by mountains and 65% of its labor force employed in agriculture, is judged to be highly vulnerable to risks, including climate change risks and food insecurity risks. The article examines a set of land use policies and practices that can be used to mitigate the vulnerability of Tajikistan’s large rural population, primarily by increasing family incomes. Empirical evidence from Tajikistan and other CIS countries suggests that families with more land and higher commercialization earn higher incomes and achieve higher well-being. The recommended policy measures that are likely to increase rural family incomes accordingly advocate expansion of smallholder farms, improvement of livestock productivity, increase of farm commercialization through improvement of farm services, and greater diversification of both income sources and the product mix. The analysis relies for supporting evidence on official statistics and recent farm surveys. Examples from local initiatives promoting sustainable land management practices and demonstrating the implementation of the proposed policy measures are presented.
Resumo:
Globalization as progress of economic development has increased population socioeconomical vulnerability when unequal wealth distribution within economic development process constitutes the main rule, with widening the gap between rich and poors by environmental pricing. Econological vulnerability is therefore increasing too, as dangerous substance and techniques should produce polluted effluents and industrial or climatic risk increasing (Woloszyn, Quenault, Faburel, 2012). To illustrate and model this process, we propose to introduce an analogical induction-model to describe both vulnerability situations and associated resilience procedures. At this aim, we first develop a well-known late 80?s model of socio-economic crack-up, known as 'Silent Weapons for Quiet Wars', which presents economics as a social extension of natural energy systems. This last, also named 'E-model', is constituted by three passive components, potential energy, kinetic energy, and energy dissipation, thus allowing economical data to be treated as a thermodynamical system. To extend this model to social and ecological sustainability pillars, we propose to built an extended E(Economic)-S(Social)-O(Organic) model, based on the three previous components, as an open model considering feedbacks as evolution sources. An applicative illustration of this model will then be described, through this summer's american severe drought event analysis
Resumo:
Globalization as progress of economic development has increased population socioeconomical vulnerability when unequal wealth distribution within economic development process constitutes the main rule, with widening the gap between rich and poors by environmental pricing. Econological vulnerability is therefore increasing too, as dangerous substance and techniques should produce polluted effluents and industrial or climatic risk increasing (Woloszyn, Quenault, Faburel, 2012). To illustrate and model this process, we propose to introduce an analogical induction-model to describe both vulnerability situations and associated resilience procedures. At this aim, we first develop a well-known late 80?s model of socio-economic crack-up, known as 'Silent Weapons for Quiet Wars', which presents economics as a social extension of natural energy systems. This last, also named 'E-model', is constituted by three passive components, potential energy, kinetic energy, and energy dissipation, thus allowing economical data to be treated as a thermodynamical system. To extend this model to social and ecological sustainability pillars, we propose to built an extended E(Economic)-S(Social)-O(Organic) model, based on the three previous components, as an open model considering feedbacks as evolution sources. An applicative illustration of this model will then be described, through this summer's american severe drought event analysis
Resumo:
Globalization as progress of economic development has increased population socioeconomical vulnerability when unequal wealth distribution within economic development process constitutes the main rule, with widening the gap between rich and poors by environmental pricing. Econological vulnerability is therefore increasing too, as dangerous substance and techniques should produce polluted effluents and industrial or climatic risk increasing (Woloszyn, Quenault, Faburel, 2012). To illustrate and model this process, we propose to introduce an analogical induction-model to describe both vulnerability situations and associated resilience procedures. At this aim, we first develop a well-known late 80?s model of socio-economic crack-up, known as 'Silent Weapons for Quiet Wars', which presents economics as a social extension of natural energy systems. This last, also named 'E-model', is constituted by three passive components, potential energy, kinetic energy, and energy dissipation, thus allowing economical data to be treated as a thermodynamical system. To extend this model to social and ecological sustainability pillars, we propose to built an extended E(Economic)-S(Social)-O(Organic) model, based on the three previous components, as an open model considering feedbacks as evolution sources. An applicative illustration of this model will then be described, through this summer's american severe drought event analysis
Resumo:
High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.
Resumo:
Flavanones (hesperidin, naringenin, naringin, and poncirin) in industrial, hand-squeezed orange juices and from fresh-in-squeeze machines orange juices were determined by HPLC/DAD analysis using a previously described liquid-liquid extraction method. Method validation including the accuracy was performed by using recovery tests. Samples (36) collected from different Brazilian locations and brands were analyzed. Concentrations were determined using an external standard curve. The limits of detection (LOD) and the limits of quantification (LOQ) calculated were 0.0037, 1.87, 0.0147, and 0.0066 mg 100 g(-1) and 0.0089, 7.84, 0.0302, and 0.0200 mg 100 g(-1) for naringin, hesperidin, poncirin, and naringenin, respectively. The results demonstrated that hesperidin was present at the highest concentration levels, especially in the industrial orange juices. Its average content and concentration range were 69.85 and 18.80-139.00 mg 100 g(-1). The other flavanones showed the lowest concentration levels. The average contents and concentration ranges found were 0.019, 0.01-0.30, and 0.12 and 0.1-0.17, 0.13, and 0.01-0.36 mg 100 g(-1), respectively. The results were also evaluated using the principal component analysis (PCA) multivariate analysis technique which showed that poncirin, naringenin, and naringin were the principal elements that contributed to the variability in the sample concentrations.
A Feasibility Study Of Fricke Dosimetry As An Absorbed Dose To Water Standard For 192ir Hdr Sources.
Resumo:
High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future.
Resumo:
Giardia duodenalis is a flagellate protozoan that parasitizes humans and several other mammals. Protozoan contamination has been regularly documented at important environmental sites, although most of these studies were performed at the species level. There is a lack of studies that correlate environmental contamination and clinical infections in the same region. The aim of this study is to evaluate the genetic diversity of a set of clinical and environmental samples and to use the obtained data to characterize the genetic profile of the distribution of G. duodenalis and the potential for zoonotic transmission in a metropolitan region of Brazil. The genetic assemblages and subtypes of G. duodenalis isolates obtained from hospitals, a veterinary clinic, a day-care center and important environmental sites were determined via multilocus sequence-based genotyping using three unlinked gene loci. Cysts of Giardia were detected at all of the environmental sites. Mixed assemblages were detected in 25% of the total samples, and an elevated number of haplotypes was identified. The main haplotypes were shared among the groups, and new subtypes were identified at all loci. Ten multilocus genotypes were identified: 7 for assemblage A and 3 for assemblage B. There is persistent G. duodenalis contamination at important environmental sites in the city. The identified mixed assemblages likely represent mixed infections, suggesting high endemicity of Giardia in these hosts. Most Giardia isolates obtained in this study displayed zoonotic potential. The high degree of genetic diversity in the isolates obtained from both clinical and environmental samples suggests that multiple sources of infection are likely responsible for the detected contamination events. The finding that many multilocus genotypes (MLGs) and haplotypes are shared by different groups suggests that these sources of infection may be related and indicates that there is a notable risk of human infection caused by Giardia in this region.
Resumo:
The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (a=5%). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress.