985 resultados para Voluntary exercise
Resumo:
We have previously demonstrated that exercise training prevents the development of Angiotensin (Ang) II-induced atherosclerosis and vulnerable plaques in Apolipoprotein E-deficient (ApoE-/-) mice. In this report, we investigated whether exercise attenuates progression and promotes stability in pre-established vulnerable lesions. To this end, ApoE-/- mice with already established Ang II-mediated advanced and vulnerable lesions (2-kidney, 1-clip [2K1C] renovascular hypertension model), were subjected to sedentary (SED) or voluntary wheel running training (EXE) regimens for 4 weeks. Mean blood pressure and plasma renin activity did not significantly differ between the two groups, while total plasma cholesterol significantly decreased in 2K1C EXE mice. Aortic plaque size was significantly reduced by 63% in 2K1C EXE compared to SED mice. Plaque stability score was significantly higher in 2K1C EXE mice than in SED ones. Aortic ICAM-1 mRNA expression was significantly down-regulated following EXE. Moreover, EXE significantly down-regulated splenic pro-inflammatory cytokines IL-18, and IL-1β mRNA expression while increasing that of anti-inflammatory cytokine IL-4. Reduction in plasma IL-18 levels was also observed in response to EXE. There was no significant difference in aortic and splenic Th1/Th2 and M1/M2 polarization markers mRNA expression between the two groups. Our results indicate that voluntary EXE is effective in slowing progression and promoting stabilization of pre-existing Ang II-dependent vulnerable lesions by ameliorating systemic inflammatory state. Our findings support a therapeutic role for voluntary EXE in patients with established atherosclerosis.
Resumo:
MicroRNAs (miRNAs) may be important mediators of the profound molecular and cellular changes that occur after traumatic brain injury (TBI). However, the changes and possible roles of miRNAs induced by voluntary exercise prior to TBI are still not known. In this report, the microarray method was used to demonstrate alterations in miRNA expression levels in the cerebral cortex of TBI mice that were pretrained on a running wheel (RW). Voluntary RW exercise prior to TBI: i) significantly decreased the mortality rate and improved the recovery of the righting reflex in TBI mice, and ii) differentially changed the levels of several miRNAs, upregulating some and downregulating others. Furthermore, we revealed global upregulation of miR-21, miR-92a, and miR-874 and downregulation of miR-138, let-7c, and miR-124 expression among the sham-non-runner, TBI-non-runner, and TBI-runner groups. Quantitative reverse transcription polymerase chain reaction data (RT-qPCR) indicated good consistency with the microarray results. Our microarray-based analysis of miRNA expression in mice cerebral cortex after TBI revealed that some miRNAs such as miR-21, miR-92a, miR-874, miR-138, let-7c, and miR-124 could be involved in the prevention and protection afforded by voluntary exercise in a TBI model.
Resumo:
Voluntary exercise (VE) has a beneficial influence on the heart and mean lifespan. The present study evaluates structural adaptations of cardiomyocytes and their mitochondria due to VE by new, unbiased stereological methods. Female, 7-9-week-old mice were randomly assigned to a control (CG, n = 7) or VE group (EG, n = 7). EG animals were housed in cages with free access to a running wheel and had a mean running distance of 6.7 (1.8) km per day. After 4 weeks, the hearts of all mice were processed for light and electron microscopy. We estimated the number and volume of cardiomyocytes by the disector method and the number and volume of mitochondria by estimation of the Euler number. In comparison to CG, VE did not have an effect on the myocardial volume of the left ventricle (CG: 93 (10), EG: 103 (17) (mm(3))), the number of cardiomyocytes (CG: 2.81 (0.27), EG: 2.82 (0.43) (x10(6))) and their number-weighted mean volume. However, the composition of the cardiomyocytes changed due to VE. The total volume of mitochondria (CG: 21.8 (4.9), EG: 32.2 (4.3) (mm(3)), P < 0.01) and the total number (CG: 3.76 (0.44), EG: 7.02 (1.13) (x10(10)), P < 0.001) were significantly higher in EG than in CG. The mean number-weighted mitochondrial volume was smaller in EG than in CG (P < 0.05). In summary, VE does not alter ventricular volume nor cardiomyocyte volume or number but the oxidative capacity of cardiomyocytes by an increased mitochondrial number and total volume in the left ventricle. These structural changes may participate in the beneficial effects of VE.
Resumo:
The senescence-accelerated SAMP8 mouse model displays features of cognitive decline and Alzheimer's disease. With the purpose of identifying potential epigenetic markers involved in aging and neurodegeneration, here we analyzed the expression of 84 mature miRNAs, the expression of histone-acetylation regulatory genes and the global histone acetylation in the hippocampus of 8-month-old SAMP8 mice, using SAMR1 mice as control. We also examined the modulation of these parameters by 8 weeks of voluntary exercise. Twenty-one miRNAs were differentially expressed between sedentary SAMP8 and SAMR1 mice and seven miRNAs were responsive to exercise in both strains. SAMP8 mice showed alterations in genes involved in protein acetylation homeostasis such as Sirt1 and Hdac6 and modulation of Hdac3 and Hdac5 gene expression by exercise. Global histone H3 acetylation levels were reduced in SAMP8 compared with SAMR1 mice and reached control levels in response to exercise. In sum, data presented here provide new candidate epigenetic markers for aging and neurodegeneration and suggest that exercise training may prevent or delay some epigenetic alterations associated with accelerated aging.
Resumo:
The senescence-accelerated SAMP8 mouse model displays features of cognitive decline and Alzheimer's disease. With the purpose of identifying potential epigenetic markers involved in aging and neurodegeneration, here we analyzed the expression of 84 mature miRNAs, the expression of histone-acetylation regulatory genes and the global histone acetylation in the hippocampus of 8-month-old SAMP8 mice, using SAMR1 mice as control. We also examined the modulation of these parameters by 8 weeks of voluntary exercise. Twenty-one miRNAs were differentially expressed between sedentary SAMP8 and SAMR1 mice and seven miRNAs were responsive to exercise in both strains. SAMP8 mice showed alterations in genes involved in protein acetylation homeostasis such as Sirt1 and Hdac6 and modulation of Hdac3 and Hdac5 gene expression by exercise. Global histone H3 acetylation levels were reduced in SAMP8 compared with SAMR1 mice and reached control levels in response to exercise. In sum, data presented here provide new candidate epigenetic markers for aging and neurodegeneration and suggest that exercise training may prevent or delay some epigenetic alterations associated with accelerated aging.
Resumo:
Most of the human population in the western world has access to unlimited calories and leads an increasingly sedentary lifestyle. The propensity to undertake voluntary exercise or indulge in spontaneous physical exercise, which might be termed "exercise salience", is drawing increased scientific attention. Despite its genetic aspects, this complex behaviour is clearly modulated by the environment and influenced by physiological states. Inflammation is often overlooked as one of these conditions even though it is known to induce a state of reduced mobility. Chronic subclinical inflammation is associated with the metabolic syndrome; a largely lifestyle-induced disease which can lead to decreased exercise salience. The result is a vicious cycle that increases oxidative stress and reduces metabolic flexibility and perpetuates the disease state. In contrast, hormetic stimuli can induce an anti-inflammatory phenotype, thereby enhancing exercise salience, leading to greater biological fitness and improved functional longevity. One general consequence of hormesis is upregulation of mitochondrial function and resistance to oxidative stress. Examples of hormetic factors include calorie restriction, extreme environmental temperatures, physical activity and polyphenols. The hormetic modulation of inflammation, and thus, exercise salience, may help to explain the highly heterogeneous expression of voluntary exercise behaviour and therefore body composition phenotypes of humans living in similar obesogenic environments.
Resumo:
Physical exercise is known to enhance brain function in several aspects. We evaluated the acute effects of a moderate forced exercise protocol on synaptic proteins, namely synapsin 1 (SYN) and synaptophysin (SYP), and structural proteins (neurofilaments, NFs) in rat brain regions related to motor function and often affected by neurodegenerative disorders. Immunohistochemistry, Western blotting and real-time PCR were used to analyze the expression of those proteins after 3, 7 and 15 days of exercise (EX3, EX7 and EX15). In the cerebellum, increase of SYN was observed at EX7 and EX15 and of NF68 at EX3. In the substantia nigra, increases of protein levels were observed for NF68 and NF160 at EX3. In the striatum, there was an increase of SYN at EX3 and EX7, of SYP at EX7 and of NF68 at EX3. In the cortex, decreased levels of NF68 and NF160 were observed at EX3, followed by an increase of NF68 at EX15. In the reticular formation, all NF proteins were increased at EX15. The mRNA data for each time-point and region also revealed significant exercise-related changes of SYN, SYP and NF expression. These results suggest that moderate physical exercise modulates synaptic and structural proteins in motor brain areas, which may play an important role in the exercise-dependent brain plasticity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running ('high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran ∼2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.
Resumo:
The function of myogenic regulatory factors (MRFs) during adult life is not well understood. The requirement of one of these MRFs, myogenin (Myog), during embryonic muscle development suggests an equally important role in adult muscle. In this study, we have determined the function of myogenin during adult life using a conditional allele of Myog. In contrast to embryonic development, myogenin is not required for adult viability, and Myog-deleted mice exhibited no remarkable phenotypic changes during sedentary life. Remarkably, sedentary Myog-deleted mice demonstrated enhanced exercise endurance during involuntary treadmill running. Altered blood glucose and lactate levels in sedentary Myog-deleted mice after exhaustion suggest an enhanced glycolytic metabolism and an ability to excessively deplete muscle and liver glycogen stores. Traditional changes associated with enhanced exercise endurance, such as fiber type switching, and increased oxidative potential, were not detected in sedentary Myog-deleted mice. After long-term voluntary exercise, trained Myog-deleted mice demonstrated an enhanced adaptive response to exercise. Trained Myog-deleted mice exhibited superior exercise endurance associated with an increased proportion of slow-twitch fibers and increased oxidative capacity. In a parallel experiment, dystrophin-deficient young adult mice showed attenuated muscle fatigue following the deletion of Myog. These results demonstrate a novel and unexpected role for myogenin in modulating skeletal muscle metabolism.
Resumo:
L'athérosclérose est un processus inflammatoire chronique à l'origine des accidents cardiovasculaires qui constitue l'une des premières causes de mortalité en France. L'inflammation est le facteur essentiel dans l'initiation, la progression et l'instabilité des lésions athéromateuses à l'origine des accidents aigus. Les données récentes suggèrent que l'activation des récepteurs nucléaires PPAR (Peroxysome-Proliferator Activated Receptor) par des ligands pharmacologiques prévient le développement et la progression de l'athérosclérose et diminue de manière importante la mortalité cardiovasculaire. À côté de ces traitements pharmacologiques, l'exercice physique prévient aussi la mortalité cardiovasculaire de manière significative. L'objectif de notre premier travail a été d'explorer les effets de l'exercice physique de natation, sur le déve¬loppement des lésions athéromateuses d'une part et d'autre part, sur l'expression des récepteurs nucléaires PPAR. Nos résultats montrent que l'exercice physique de natation diminue la progression de l'athérosclérose et stimule l'expression des PPAR-γ vasculaires. De manière intéressante, lorsque le PPAR-γ est inhibé avec l'antagoniste BADGE, les effets antiathérogènes de l'exercice physique sont abolis. L'hypertension est à l'origine des complications graves telles que la rupture de plaque d'athérosclérose. L'objectif de notre deuxième travail a été d'explorer l'implication des PPAR dans la progression et la stabilité des lésions athéromateuses chez des souris ApoE-/- hypercholestérolemiques et hypertendues (2K1C), soumises à des exercices physiques (volontaire ou imposé) ou traités avec le telmisartan, un antihypertenseur. Nos résultats montrent que l'exercice physique possède différents mécanismes protecteurs. De manière similaire, l'exercice physique favorise la stabilité de lésions athéromateuses de manière comparable au traitement pharmacologique. De plus, nos résultats montrent que les souris traitées avec l'exercice imposé ou le telmisartan présentent un mécanisme comparable qui permet de réduire significativement l'expression des cytokines pro-inflammatoire et d'activer les PPAR-γ vasculaires. L'exercice volontaire favorise l'expression des marqueurs des macrophages alternatifs M2 et des cytokines anti-inflammatoires (CD 206, IL-1 Ra). L'exercice volontaire diminue significativement l'extension des lésions athéromateuses de manière comparable au telmisartan. Ces résultats montrent que l'exercice physique volontaire et l'exercice physique imposé ont deux mécanismes d'actions distincts. De plus, la surexpression des M2 en réponse à l'exercice volontaire modifie la balance inflammatoire en faveur des M2. Ce renversement de la balance au profit des macrophages alternatifs M2 est significativement corrélé à la diminution de la progression des lésions athéromateuses. Les exercices imposé et volontaire possèdent des mécanismes d'action distincts. L'exercice soumis diminue l'expression des cytokines pro-inflammatoires tandis que l'exercice volontaire augmente l'expression des cytokines anti-inflammatoires et favorise un phénotype anti-inflammatoire des macrophages M2 qui s'accompagne d'une réduction des lésions athéromateuses. - Atherosclerosis is a complex inflammatory process, leading cause of morbidity and mortality in France. Inflammation is essential in initiation, progression and atherosclerosis plaque destabilization leading to acute cardiovascular events. Recent studies suggest that pharmacological PPAR activation prevents ΑΤΗ développement and progression and decreased cardiovascular mortality. Compared to pharmacological treatment, physical exercise also significantly prevents cardiovascular mortality. The aim of the first study was to investigate the influence of physical exercise on ATS development and PPAR expression in arterial wall. Our results had shown that physical exercise decrease ΑΤΗ progression and increase PPAR-γ expression in arterial wall. Interestingly, PPAR-γ inhibition with BADGE, a PPAR-γ antagonist abolishes these antiatherogenic effects. Hypertension increase ΑΤΗ complication such as plaque rupture. The aim of the second study were to inves¬tigate PPAR-γ implication in progression and stabilization of ΑΤΗ lesions in hypercholesterolemic and hypertensive ApoE-/- mice (2K1C) submitted to different exercises (voluntary wheel running and submitted treadmill running) or treated with telmisartan an anti-hypertensive drug. Our results shown that, physical exercise prevents ATS cardiovascular events by several mechanisms. Similarly to telmisartan, physical exercises stabilize ΑΤΗ lesion. Moreover results shown that, submitted exercise and telmisartan have an comparable mechanism. In fact, they significantly decrease pro-inflammatory cytokines expression and in the same time activated PPAR-γ expression in arterial wall. Contrary to submitted exercise, voluntary exercises increases expression of anti-inflammatory cytokines IL-1ra and increase M2 marker CD206. These results suggest that voluntary and submitted exercise have two different mechanism of action. Moreover, M2 surexpression in response to voluntary exercise shift the inflammatory balance in favor to M2. Further, this change of balance in favor to M2, is significantly correlated to decrease of ΑΤΗ progression. Voluntary exercises significantly decreases ΑΤΗ progression in the same levels like telmisartan treatment. Voluntary and submitted exercise has two different mechanisms, submitted exercise decrease proinflammatory cytokines expression whereas voluntary exercise increase anti-inflammatory cytokines expression and promote an anti-inflammatory phenotype of macrophages M2. The shift of M1/M2 balance towards M2 decreases atherosclerosis progression.
Resumo:
Les ß2-agonistes sont des bronchodilatateurs qui sont prescrits pour traiter l'asthme et l'asthme induite par l'exercice (AIE). Il est relevant de comprendre s'il y a une utilisation adéquate de ces médicaments pour traiter l'AIE chez les athlètes de haut niveau, ou s'ils sont utilisés pour leur potentiel effet ergogénique sur la performance physique. Ce travail examine les actions centrales et périphériques sur la fonction contractile du muscle squelettique humain in vivo induits par l'ingestion d'une dose thérapeutique de ß2- agonistes. Le premier but était d'évaluer si les ß2-agonistes exerçaient une potentialisation de la contractilité du muscle humain et/ou un effet "anti¬fatigue" comme observé dans le modèle animal. Les résultats n'ont fournit aucune évidence d'une potentialisation sur le muscle squelettique humain in vivo non-fatigué et fatigué induit par l'administration orale de ß2-agonistes. Tout effet excitateur exercé par ce traitement sur le système nerveux central a été aussi exclu. Le deuxième but était de déterminer si les ß2-agonistes affaiblissaient la contractilité du muscle squelettique humain à contraction lente, et d'évaluer si ce changement pouvait interférer avec le contrôle moteur au muscle. Les résultats ont montré que les ß2-agonistes affaiblissent la contractilité des fibres lentes, comme conséquence de l'effet lusitrope positif se produisant dans ces fibres. La capacité de développer une force maximale n'est pas réduite par le traitement, même si une augmentation de la commande centrale au muscle est requise pour produire la même force lors de contractions sous-maximales. Le but final était d'examiner si une adaptation du contrôle moteur était re¬quis pour compenser l'affaiblissement des fibres lentes exercée par les ß2- agonistes pendant un exercice volontaire, et de déterminer si cette adaptation centrale pouvait accroître la fatigue musculaire. Malgré le fait que les résultats confirment l'effet affaiblissant induit par les ß2-agonistes, ce changement contractile n'influence pas le contrôle moteur au muscle pendant les contractions sous-maximales de l'exercice fatiguant, et n'accroît pas le degré de fatigue. Ce travail éclaircit les actions spécifiques des ß2-agonistes sur la fonction contractile du muscle squelettique humain in vivo et leurs influence sur le contrôle moteur. Les mécanismes sous-jacents de l'action ergogénique sur la performance physique produit par les ß2-agonistes sont aussi élucidés. -- ß2-Agonists are bronchodilators that are widely prescribed for the treatment of asthma and exercise-induced asthma (EIA). The extensive use of ß2-agonists by competitive athletes has raised the question as to whether there is a valid need for this class of drugs because of EIA or a misuse because of their potential ergogenic effect on exercise performance. This work investigated the central and peripheral actions that were elicited by the ingestion of a therapeutic dose of ß2-agonists on the contractility of human skeletal muscle in vivo. The first objective was to investigate whether ß2-agonists would potentiate muscle contractility and/or exert the "anti-fatigue" effect observed in animal models. The findings did not provide any evidence for the ß2-agonist-induced potentiation of in vivo human non-fatigued and fatigued skeletal muscle. Moreover, the findings exclude any excitatory action of this treatment on the central nervous system. The second objective was to explore whether the weakening action on the contractile function would occur after ß2-agonist intake in human slow-twitch skeletal muscle and to ascertain whether this contractile change may interfere with muscle motor control. The results showed that ß2-agonists weaken the contractility of slow-twitch muscle fibres as a result of the lusitropic effect occurring in these fibres. The maximal force-generating capacity of the skeletal muscle is not reduced by ß2-agonists, even though an augmented neural drive to muscle is required to develop the same force during submaximal contractions. The final objective was to examine whether a motor control adjustment is needed to compensate for the ß2-agonist-induced weakening effect on slow- twitch fibres during a voluntary exercise and to also assess whether this central adaptation could exaggerate muscle fatigue. Despite the findings confirming the occurrence of the weakening action that is exerted by ß2- agonists, this contractile change did not interfere with muscle motor control during the submaximal contractions of the fatiguing exercise and did not augment the degree of the muscle fatigue. This work contributes to a better understanding of the specific actions of ß2-agonists on the contractile function of in vivo human skeletal muscles and their influence on motor control. In addition, the findings elucidate mechanisms that could underlie the ergogenic effect that is exerted by ß2- agonists on physical performance.
Resumo:
The aim of the present study was to determine whether training-related alterations in muscle mechanoreflex activation affect cardiac vagal withdrawal at the onset of exercise. Eighteen male volunteers divided into 9 controls (26 ± 1.9 years) and 9 racket players (25 ± 1.9 years) performed 10 s of voluntary and passive movement characterized by the wrist flexion of their dominant and non-dominant limbs. The respiratory cycle was divided into four phases and the phase 4 R-R interval was measured before and immediately following the initiation of either voluntary or passive movement. At the onset of voluntary exercise, the decrease in R-R interval was similar between dominant and non-dominant forearms in both controls (166 ± 20 vs 180 ± 34 ms, respectively; P > 0.05) and racket players (202 ± 29 vs 201 ± 31 ms, respectively; P > 0.05). Following passive movement, the non-dominant forearm of racket players elicited greater changes than the dominant forearm (129 ± 30 vs 77 ± 17 ms; P < 0.05), as well as both the dominant (54 ± 20 ms; P < 0.05) and non-dominant (59 ± 14 ms; P < 0.05) forearms of control subjects. In contrast, changes in R-R interval elicited by the racket players' dominant forearm were similar to that observed in the control group, indicating that changes in R-R interval at the onset of passive exercise were not attenuated in the dominant forearm of racket players. In summary, cardiac vagal withdrawal induced by muscle mechanoreflex stimulation is well-maintained, despite long-term exposure to training.
Resumo:
Antecedentes. La enfermedad de Parkinson (EP) es la segunda enfermedad neurodegenerativa más común en el mundo, la cual afecta el componente físico, psicológico y social de los individuos que la padecen. Numerosos estudios han abordado los beneficios de diferentes programas de ejercicio, llegando a ser una estrategia no-farmacológica efectiva para aminorar el deterioro funcional de los pacientes con EP. Objetivo. Determinar los efectos de las diferentes modalidades de ejercicio físico en los principales desenlaces clínicos en pacientes con EP. Métodos. Se consultaron las bases de datos MEDLINE, EMBASE, Scopus, CENTRAL y PEDro desde febrero de 1990 hasta febrero de 2014 para identificar Ensayos Clínicos Aleatorizados (ECA) publicados. Además, se examinaron las listas de referencias de otras revisiones y de estudios identificados. La extracción de datos se realizó por dos autores independientes. Se empleó un modelo de efectos aleatorios en presencia de heterogeneidad estadística (I2>50%). El sesgo de publicación fue evaluado mediante el gráfico de embudo. Resultados: Un total de 18 estudios fueron incluidos. Se encontraron diferencias estadísticamente significativas en las intervenciones con ejercicio y las siguientes medidas de resultado, severidad de los síntomas motores (MDS-UPDRS) DME 1.44, IC 95% [-2.09 a -0.78] (p<0.001) I2= 87,9% y el equilibrio DME 0,52 IC 95% [0,30 a 0,74] (p<0.001) I2= 85,6%. En el análisis de subgrupos en la modalidad de ejercicio aeróbico, en MDS-UPDRS DME -1,28, IC 95% [-1,98 a -0,59] (p<0.001), 3 calidad de vida DME -1,91 IC 95% [-2,76 a -1,07] (p<0.001), equilibrio DME 0,54 IC 95% [0,31 a 0,77] (p<0.001), 10-m WT DME 0,15 IC 95% [0,06 a 0,25] (p<0.001) y Vo2 máximo DME -1,09 IC 95% [-1,31 a -0,88] (p=0.001), 6MWT DME 40,46 IC 95% [11,28 a 69,65] (p=0.007). Conclusiones: El ejercicio aeróbico produjo mejoras significativas en MDS UPDRS, equilibrio, calidad de vida, 10-m WT y y Vo2 máximo; mientras que el ejercicio combinado mejoró la fuerza.
Resumo:
A prática regular de exercícios físicos previne e combate várias doenças ao longo do tempo, destacando-se como excelente ferramenta terapêutica para o tratamento de lesões no sistema nervoso central (SNC). Após uma transecção (completa ou incompleta/hemissecção) da medula espinhal, células gliais reativas secretam substâncias inibitórias à regeneração axonal como, por exemplo, as moléculas de proteoglicanas de sulfato de condroitina (PGSCs) que exercem papel importante na formação de uma barreira físico-química, chamada cicatriz glial, que impede o crescimento dos axônios danificados pela lesão. Pesquisas que envolvem modelo experimental de lesão da medula espinhal e reabilitação por exercício físico têm obtido promissores resultados. No entanto, os mecanismos fisiológicos e moleculares pelos quais promovem esses resultados positivos ainda são pouco conhecidos. O objetivo do presente trabalho foi analisar a recuperação da função motora da pata posterior após protocolo de exercício físico voluntario em modelo experimental de hemissecção da medula espinhal e investigar dois mecanismos moleculares envolvidos na recuperação funcional: a degradação de PGSCs nas redes perineuronais e acetilação de histonas. Para isso, vinte e quatro (24) ratos da linhagem Wistar (Rattus novergicus) foram utilizados e separados em 3 grupos (controle, treinados e não treinados). Com exceção do grupo controle, todos os animais foram habituados a rodas de corridas e em seguidas foram submetidos a uma cirurgia experimental de hemissecção da medula espinhal, na altura da 8a vertebra torácica. Nossos resultados demonstraram que o exercício voluntário em rodas de corrida após lesão experimental da medula espinhal promoveu recuperação da função motora da pata posterior afetada, porém não observamos diferenças qualitativas na acetilação de histonas e degradação de PGSCs entre os grupos.
Resumo:
One of the pathological hallmarks of Alzheimer's disease (AD) brain is extracellular β-amyloid (Aβ) plaques containing 39-42 amino acid Aβ peptides. The deposition of Aβ around blood vessels, known as Cerebral amyloid angiopathy (CAA), is also a common feature in AD brain. Vascular density and cerebral blood flow are reduced in AD brains, and vascular risk factors such as hypertension and diabetes are also risk factors for AD. We have shown previously that Aβ peptides can potently inhibit angiogenesis both in-vitro and in-vivo, but the mechanism of action for this effect is not known. Therefore, my first hypothesis was that particular amino acid sequence(s) within the Aβ peptide are required for inhibition of angiogenesis. From this aim, I found a peptide sequence which was critical for anti-angiogenic activity (HHQKLVFF). This sequence contains a heparan sulfate proteoglycan growth factor binding domain implying that Aβ can interfere with growth factor signaling. Leading on from this, my second hypothesis was that Aβ can inhibit angiogenesis by binding to growth factor receptors. I found that Aβ can bind to Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2), and showed that this is one mechanism by which Aβ can inhibit angiogenesis. Since the vasculature is disrupted in AD brains, I investigated whether a strategy to increase brain vascularization would be beneficial against AD pathology. Therefore, my third hypothesis was that voluntary exercise (which is known to increase brain vascularization in rodents) can ameliorate Aβ pathology, increase brain vascularization, and improve behavioral deficits in a transgenic mouse model of AD. I found that exercise has no effect on Aβ pathology, brain vascularization or behavioral deficits. Therefore, in the transgenic mouse model that I used, exercise is an ineffective therapeutic strategy against AD pathology and symptoms.