1000 resultados para Visual MODFLOW
Resumo:
Leachate from an untreated landfill or landfill with damaged liners will cause the pollution of soil and ground water. Here an attempt was made to generate knowledge on concentrations of all relevant pollutants in soil due to municipal solid waste landfill leachate and its migration through soil and also to study the effect of leachate on the engineering properties of soil. To identify the pollutants in soil due to the leachate generated from municipal solid waste landfill site, a case study on an unlined municipal solid waste landfill at Kalamassery has been done. Soil samples as well as water samples were collected from the site and analysed to identify the pollutants and its effect on soil characteristics. The major chemicals in the soil were identified as Ammonia, Chloride, Nitrate, Iron, Nickel, Chromium, Cadmium etc.. Engineering properties of field soil samples show that the chemicals from the leachate of landfill may have effect on the engineering properties of soil. Laboratory experiments were formulated to model the field around an unlined MSW landfill using two different soils subjected to a synthetic leachate. The Maximum change in chemical concentration and engineering property was observed on soil samples at a radial distance of 0.2 m and at a depth of 0.3 m. The pollutant (chemicals) transport pattern through the soil was also studied using synthetic leachate. To establish the effect of pollutants (chemicals) on engineering properties of soil, experiments were conducted on two types soils treated with the synthetic chemicals at four different concentrations. Analyses were conducted after maturing periods of 7, 50, 100 and 150 days. Test soils treated with maximum chemical concentration and matured for 150 days were showing major change in the properties. To visualize the flow of pollutants through soil in a broader sense, the transportation of pollutants through soil was modeled using software ‘Visual MODFLOW’. The actual field data collected for the case study was used to calibrate the modelling and thus simulated the flow pattern of the pollutants through soil around Kalamassery municipal solid waste landfill for an extent of 4 km2. Flow was analysed for a time span of 30 years in which the landfill was closed after 20 years. The concentration of leachate beneath the landfill was observed to be reduced considerably within one year after closure of landfill and within 8 years, it gets lowered to a negligible level. As an environmensstal management measure to control the pollution through leachate, permeable reactive barriers are used as an emerging technology. Here the suitability of locally available materials like coir pith, rice husk and sugar cane bagasse were investigated as reactive media in permeable reactive barrier. The test results illustrates that, among these, coir pith was showing better performance with maximum percentage reduction in concentration of the filtrate. All these three agricultural wastes can be effectively utilized as a reactive material. This research establishes the influence of leachate of municipal solid waste landfill on the engineering properties of soil. The factors such as type of the soil, composition of leachate, infiltration rate, aquifers, ground water table etc., will have a major role on the area of influence zone of the pollutants in a landfill. Software models of the landfill area can be used to predict the extent and the time span of pollution of a landfill, by inputting the accurate field parameters and leachate characteristics. The present study throws light on the role of agro waste materials on the reduction of the pollution in leachate and thus prevents the groundwater and soil from contamination
Resumo:
The ongoing depletion of the coastal aquifer in the Gaza strip due to groundwater overexploitation has led to the process of seawater intrusion, which is continually becoming a serious problem in Gaza, as the seawater has further invaded into many sections along the coastal shoreline. As a first step to get a hold on the problem, the artificial neural network (ANN)-model has been applied as a new approach and an attractive tool to study and predict groundwater levels without applying physically based hydrologic parameters, and also for the purpose to improve the understanding of complex groundwater systems and which is able to show the effects of hydrologic, meteorological and anthropogenic impacts on the groundwater conditions. Prediction of the future behaviour of the seawater intrusion process in the Gaza aquifer is thus of crucial importance to safeguard the already scarce groundwater resources in the region. In this study the coupled three-dimensional groundwater flow and density-dependent solute transport model SEAWAT, as implemented in Visual MODFLOW, is applied to the Gaza coastal aquifer system to simulate the location and the dynamics of the saltwater–freshwater interface in the aquifer in the time period 2000-2010. A very good agreement between simulated and observed TDS salinities with a correlation coefficient of 0.902 and 0.883 for both steady-state and transient calibration is obtained. After successful calibration of the solute transport model, simulation of future management scenarios for the Gaza aquifer have been carried out, in order to get a more comprehensive view of the effects of the artificial recharge planned in the Gaza strip for some time on forestall, or even to remedy, the presently existing adverse aquifer conditions, namely, low groundwater heads and high salinity by the end of the target simulation period, year 2040. To that avail, numerous management scenarios schemes are examined to maintain the ground water system and to control the salinity distributions within the target period 2011-2040. In the first, pessimistic scenario, it is assumed that pumping from the aquifer continues to increase in the near future to meet the rising water demand, and that there is not further recharge to the aquifer than what is provided by natural precipitation. The second, optimistic scenario assumes that treated surficial wastewater can be used as a source of additional artificial recharge to the aquifer which, in principle, should not only lead to an increased sustainable yield of the latter, but could, in the best of all cases, revert even some of the adverse present-day conditions in the aquifer, i.e., seawater intrusion. This scenario has been done with three different cases which differ by the locations and the extensions of the injection-fields for the treated wastewater. The results obtained with the first (do-nothing) scenario indicate that there will be ongoing negative impacts on the aquifer, such as a higher propensity for strong seawater intrusion into the Gaza aquifer. This scenario illustrates that, compared with 2010 situation of the baseline model, at the end of simulation period, year 2040, the amount of saltwater intrusion into the coastal aquifer will be increased by about 35 %, whereas the salinity will be increased by 34 %. In contrast, all three cases of the second (artificial recharge) scenario group can partly revert the present seawater intrusion. From the water budget point of view, compared with the first (do nothing) scenario, for year 2040, the water added to the aquifer by artificial recharge will reduces the amount of water entering the aquifer by seawater intrusion by 81, 77and 72 %, for the three recharge cases, respectively. Meanwhile, the salinity in the Gaza aquifer will be decreased by 15, 32 and 26% for the three cases, respectively.
Resumo:
Urban centers in Pitimbu Watershed use significant groundwater sources for public supply. Therefore, studies in Dunas Barreiras aquifer are relevant to expand knowledge about it and help manage water resources in the region. An essential tool for this management is the numerical modeling of groundwater flow. In this work, we developed a groundwater flow model for Pitimbu Watershed, using the Visual Modflow, version 2.7.1., which uses finite difference method for solving the govern equation of the dynamics of groundwater flow. We carried out the numerical simulation of steady-state model for the entire region of the basin. The model was built in the geographical, geomorphological and hydrogeological study of the area, which defined the boundary conditions and the parameters required for the numerical calculation. Owing to unavailability of current data based on monitoring of the aquifer it was not possible to calibrate the model. However, the simulation results showed that the overall water balance approached zero, therefore satisfying the equation for the three-dimensional behavior of the head water in steady state. Variations in aquifer recharge data were made to verify the impact of this contribution on the water balance of the system, especially in the scenario in which recharge due to drains and sinks was removed. According to the results generated by Visual Modflow occurred significantly hydraulic head lowering, ranging from 16,4 to 82 feet of drawdown. With the results obtained, it can be said that modeling is performed as a valid tool for the management of water resources in Pitimbu River Basin, and to support new studies
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The term model refers to any representation of a real system. The use of models in Hydrogeology can be valuable predictive tools for management of groundwater resources. The numeric models of groundwater flow, object of this study, consist on a set of differential equations that describe the water flow in the porous medium. In this context, numeric simulations were made for a sub-basin located at Cara Preta farm – Santa Rita do Passa Quatro – SP. The aquifer at the local is composed by rocks of Pirambóia Formation, which is part of Guarani Aquifer System. It was developed a conceptual model from previous studies in the area, and from that, simulations were made through the software Visual Modflow®. The conceptual model established previously was considered consistent through the results of simulation.
Resumo:
Questa tesi è volta a fornire un contributo conoscitivo alla quantificazione delle interferenze idrogeologiche causate dalla nuova stazione sotterranea del nodo di penetrazione ferroviaria urbana AV di Firenze, situata nei pressi dell’attuale stazione di superficie di Santa Maria Novella, e della verifica del dimensionamento delle opere di mitigazione in progetto. La tesi è effettuata in collaborazione e con il supporto tecnico di ARPAT (Agenzia Regionale per la Protezione Ambientale della Toscana), Sede di Firenze, Direzione Tecnica – Settore VIA/VAS (Valutazione d’Impatto Ambientale/Valutazione Ambientale Strategica). ARPAT è l’organo di supporto tecnico dell’Osservatorio Ambientale costituito per l’opera. La tesi sfrutta, come dati di base, tutti quelli raccolti dai progettisti nelle varie fasi, compresa la determinazione dei parametri idraulici dell’acquifero, ed i dati del monitoraggio ambientale. Il proponente dell’opera è RFI (Rete Ferroviaria Italiana) ed è realizzata e progettata dal consorzio Nodavia (General Contractor). Per l’analisi dell’interferenza idrogeologica causata dal camerone della stazione dell’alta velocità di Firenze è stato utilizzato un duplice approccio: un modello fisico ricostruito in laboratorio; un modello numerico alla differenze finite tramite codice Modflow.. Il modello fisico di laboratorio ha cercato di ricostruire, semplificandolo, il modello concettuale del problema idrogeologico di studio: l’inserimento di una diga totalmente impermeabile, trasversalmente al flusso in un mezzo poroso, attraversata da dreni orizzontali di collegamento monte-valle idrologico. Tale configurazione, anche se non strettamente in scala, ha permesso di definire preliminarmente le condizioni al contorno del sistema ed ha guidato la successiva implementazione del modello numerico. Il modello numerico fa riferimento a condizioni stazionarie. Prima è stato implementato per simulare l’andamento della falda nelle condizioni stazionarie ante-operam (I fase); successivamente è stato utilizzato per simulare l’effetto diga del camerone (II fase) e, come terza fase, per simulare l’effetto delle opere di mitigazione dell’effetto diga rappresentate da dreni sub-orizzontali.
Resumo:
The aim of this Thesis is to get in deep in the use of models (conceptual and numerical), as a prediction and analytical tool for hydrogeological studies, mainly from point of view of the mining drainage. In the first place, are developed the basic concepts and the parametric variations range are developed, usually used in the modelization of underground f10w and particle transport, and also the more recommended modelization process, analysing step by step each of its sequences, developed based in the experience of the author, contrasted against the available bibliography. Following MODFLOW is described, as a modelization tool, taking into account the advantages that its more common pre/post-treatment software have (Processing MODFLOW, Mod CAD and Visual MODFLOW). In third place, are introduced the criterions and required parameters to develop a conceptual model, numerical discretization, definition of the boundary and initial conditions, as well as all those factors which affects to the system (antropic or natural), developing the creation process, data introduction, execution of morlel, convergence criterions and calibration and obtaining result, natural of Visual MODFLOUI. Next, five practical cases are analysed, in which the author has been applied MODFLOW, and the different pre/post-treatment software (Processing MODFLOW, Mod CAD and Visual MODFLOW), describing for each one, the objectives, the conceptual model defined, discretization, the parametric definition, sensibility analysis, results reached and future states prediction. In fifth place, are presented a program developed by the author which allow to improve the facilities offered by Mod CAD and Visual MODFLOW, expanding modelization possibilities and connection to other computers. Next step it is presented a series of solutions to the most typical problems which could appear during the modelization with MODFLOW. Finally, the conclusions and recommendation readied are exposed, with the purpose to help in the developing of hydrogeological models both conceptuals and numericals. RESUMEN El objetivo de esta Tesis es profundizar en el empleo de modelos (conceptuales y numéricos), como herramienta de predicción y análisis en estudios hidrogeológicos, fundamentalmente desde el punto de vista de drenaje minero. En primer lugar, se desarrollan los conceptos básicos y los rangos de variación paramétrica, habituales en la modelización de flujos subterráneos y transporte de partículas, así como el proceso de modelización más recomendado, analizando paso a paso cada una de sus secuencias, desarrollado en base a la experiencia del autor, contrastado con la bibliografía disponible. Seguidamente se describe MODFLOW como herramienta de modelización, valorando las ventajas que presentan sus software de pre/post-tratamiento más comunes (Proccesing MODFLOW, Mod CAD y Visual MODFLOW). En tercer lugar, se introducen los criterios y parámetros precisos para desarrollar un modelo conceptual, discretización numérica, definición de las condiciones de contorno e iniciales, así como todos aquellos factores que afectan al sistema (antrópicos o naturales), desarrollando el proceso de creación, introducción de datos, ejecución del modelo, criterios de convergencia y calibración, y obtención de resultados, propios de Visual MODFLOW. A continuación, se analizan cinco casos prácticos, donde el autor ha aplicado MODFLOW, así como diferentes software de pre/post-tratamiento (Proccesing MODFLOW, Mod CAD y Visual MODFLOW), describiendo para cada uno, el objetivo marcado, modelo conceptual definido, discretización, definición paramétrica, análisis de sensibilidad, resultados alcanzados y predicción de estados futuros. En quinto lugar, se presenta un programa desarrollado por el autor, que permite mejorar las prestaciones ofrecidas por MODFLOW y Visual MODFLOW, ampliando las posibilidades de modelización y conexión con otros ordenadores. Seguidamente se plantean una serie de soluciones a los problemas más típicos que pueden producirse durante la modelización con MODFLOW. Por último, se exponen las conclusiones y recomendaciones alcanzadas, con el fin de auxiliar el desarrollo del desarrollo de modelos hidrogeológicos, tanto conceptuales como numéricos.
Resumo:
Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.2 ± 2.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors.
Resumo:
The arboreal ant Odontomachus hastatus nests among roots of epiphytic bromeliads in the sandy forest at Cardoso Island (Brazil). Crepuscular and nocturnal foragers travel up to 8m to search for arthropod prey in the canopy, where silhouettes of leaves and branches potentially provide directional information. We investigated the relevance of visual cues (canopy, horizon patterns) during navigation in O. hastatus. Laboratory experiments using a captive ant colony and a round foraging arena revealed that an artificial canopy pattern above the ants and horizon visual marks are effective orientation cues for homing O. hastatus. On the other hand, foragers that were only given a tridimensional landmark (cylinder) or chemical marks were unable to home correctly. Navigation by visual cues in O. hastatus is in accordance with other diurnal arboreal ants. Nocturnal luminosity (moon, stars) is apparently sufficient to produce contrasting silhouettes from the canopy and surrounding vegetation, thus providing orientation cues. Contrary to the plain floor of the round arena, chemical cues may be important for marking bifurcated arboreal routes. This experimental demonstration of the use of visual cues by a predominantly nocturnal arboreal ant provides important information for comparative studies on the evolution of spatial orientation behavior in ants. This article is part of a Special Issue entitled: Neotropical Behaviour.
Resumo:
The goal of this cross-sectional observational study was to quantify the pattern-shift visual evoked potentials (VEP) and the thickness as well as the volume of retinal layers using optical coherence tomography (OCT) across a cohort of Parkinson's disease (PD) patients and age-matched controls. Forty-three PD patients and 38 controls were enrolled. All participants underwent a detailed neurological and ophthalmologic evaluation. Idiopathic PD cases were included. Cases with glaucoma or increased intra-ocular pressure were excluded. Patients were assessed by VEP and high-resolution Fourier-domain OCT, which quantified the inner and outer thicknesses of the retinal layers. VEP latencies and the thicknesses of the retinal layers were the main outcome measures. The mean age, with standard deviation (SD), of the PD patients and controls were 63.1 (7.5) and 62.4 (7.2) years, respectively. The patients were predominantly in the initial Hoehn-Yahr (HY) disease stages (34.8% in stage 1 or 1.5, and 55.8 % in stage 2). The VEP latencies and the thicknesses as well as the volumes of the retinal inner and outer layers of the groups were similar. A negative correlation between the retinal thickness and the age was noted in both groups. The thickness of the retinal nerve fibre layer (RNFL) was 102.7 μm in PD patients vs. 104.2 μm in controls. The thicknesses of retinal layers, VEP, and RNFL of PD patients were similar to those of the controls. Despite the use of a representative cohort of PD patients and high-resolution OCT in this study, further studies are required to establish the validity of using OCT and VEP measurements as the anatomic and functional biomarkers for the evaluation of retinal and visual pathways in PD patients.
Resumo:
The authors conducted a systematic literature review on physical activity interventions for children and youth with visual impairment (VI). Five databases were searched to identify studies involving the population of interest and physical activity practices. After evaluating 2,495 records, the authors found 18 original full-text studies published in English they considered eligible. They identified 8 structured exercise-training studies that yielded overall positive effect on physical-fitness and motor-skill outcomes. Five leisure-time-physical-activity and 5 instructional-strategy interventions were also found with promising proposals to engage and instruct children and youth with VI to lead an active lifestyle. However, the current research on physical activity interventions for children and youth with VI is still limited by an absence of high-quality research designs, low sample sizes, use of nonvalidated outcome measures, and lack of generalizability, which need to be addressed in future studies.
Resumo:
The purpose of this study is to introduce a method to evaluate visual functions in infants in the first three months of life. An adaptation of the Guide for the Assessment of Visual Ability in Infants (Gagliardo, 1997) was used. The instrument was a ring with string. It was implemented a pilot study with 33 infants, selected according to the following criteria: neonates well enough to go home within two days of birth; 1 to 3 months of chronological age; monthly evaluation with no absence; subjects living in Campinas/SP metropolitan area. In the first month we observed: visual fixation (93,9%); eye contact (90,9%); horizontal tracking (72,7%); inspects surroundings (97,0%). In the third month, we observed: inspects own hands (42,4%) and increased movements of arms (36,4%). This method allowed the evaluation of visual functions in infants, according to the chronological age. Alterations in this function will facilitate immediate referral to medical services for diagnoses.
Resumo:
The effects of ionic strength on ions in aqueous solutions are quite relevant, especially for biochemical systems, in which proteins and amino acids are involved. The teaching of this topic and more specifically, the Debye-Hückel limiting law, is central in chemistry undergraduate courses. In this work, we present a description of an experimental procedure based on the color change of aqueous solutions of bromocresol green (BCG), driven by addition of electrolyte. The contribution of charge product (z+|z-|) to the Debye-Hückel limiting law is demonstrated when the effects of NaCl and Na2SO4 on the color of BCG solutions are compared.
Resumo:
Purpose: To analyze the effects of 100 mg of sildenafil citrate (Viagra®) on the retrobulbar circulation and visual field. Methods: A double masked, placebo controlled study was conducted in 10 males with a mean age of 27.7 + 5.68 years. The right eye of each volunteer underwent orbital color Doppler imaging and automated perimetry (Humphrey, program 30-2, Full-Threshold Strategy) at 3 occasions: baseline, 1 hour after placebo and 1 hour after 100 mg of sildenafil. The foveal threshold and the mean deviation (MD) were analyzed by automated perimetry on the three occasions. Color Doppler imaging allowed the measurement of the peak systolic velocity (PSV), end diastolic velocity (EDV) and Pourcelot index (PI) in the central retinal artery and ophthalmic artery. Results: The foveal threshold and the mean deviation did not show a significant change following the administration of sildenafil. The ophthalmic artery peak systolic velocity and end diastolic velocity significantly increased after the administration of sildenafil (p<0.001). The hemodynamic parameters in the central retinal artery and the ophthalmic artery PI did not significantly change. Conclusions: Sildefanil citrate increased the blood flow velocities in the ophthalmic artery in normal subjects, with no significant changes in the foveal threshold and mean deviation in the automated perimetry.