749 resultados para Virtual Reality,Cloud Gaming,Cloud Computing,Client-Server,Android,Unity,Multiutenza
Resumo:
L’obbiettivo di questa tesi è realizzare il prototipo di un’applicazione client-server che permetta di utilizzare in remoto applicazioni in Virtual Reality, fornendo allo stesso tempo supporto alla multiutenza. L’applicazione in realtà virtuale dovrà girare sul server, dispositivo con capacità di calcolo notevolmente superiori rispetto a quelle del client. Più utenti dovranno avere la possibilità di connettersi contemporaneamente e condividere lo stesso spazio virtuale. Il client sarà, in questo caso, un’applicazione Android che si connetterà al server e avrà il compito di mostrare all'utente l’output dell’applicazione in Virtual Reality e allo stesso tempo ricevere l’input da inviare al server. Un altro obbiettivo durante lo sviluppo del prototipo è quello di realizzare una libreria che offra le funzionalità sopraelencate, facilmente integrabile in nuovi progetti o in progetti già esistenti. Utilizzando questa struttura client-server sarà possibile sviluppare applicazioni che permettano a più persone di condividere lo stesso spazio virtuale, ognuno dal proprio punto di vista, utilizzando visori e sistemi operativi diversi.
Resumo:
Negli ultimi anni si sente sempre più spesso parlare di cloud computing. L'idea di fondo di questo concetto è quella di pagare per il solo effettivo utilizzo di un servizio, disponibile sulla rete, avendo a disposizione la possibilità di poter variare le proprie risorse utilizzabili a seconda delle necessità, che potrebbero essere, per esempio, applicazioni standard oppure spazi di storage per i dati. Quando cominciò a diffondersi l'utilizzo del Web, la rete Internet veniva raffigurata come una nuvola (cloud) in modo tale che si rendesse l'idea di un'entità esterna rispetto alla nostra casa o al nostro posto di lavoro, un qualcosa cioè al di fuori dei luoghi abituali in cui vengono utilizzati i PC. Tale rappresentazione diventa ora utile per poter spiegare il concetto di cloud computing. Infatti, grazie a questa nuova tecnologia, dati e programmi normalmente presenti nei nostri computer potranno ora trovarsi sul cloud. Molti reparti IT sono costretti a dedicare una parte significativa del loro tempo a progetti di implementazione, manutenzione e upgrade che spesso non danno un vero valore per l'azienda. I team di sviluppo hanno cominciato quindi a rivolgersi a questa nuova tecnologia emergente per poter minimizzare il tempo dedicato ad attività a basso valore aggiunto per potersi concentrare su quelle attività strategiche che possono fare la differenza per un'azienda. Infatti un'infrastruttura come quella cloud computing promette risparmi nei costi amministrativi che raggiungono addirittura il 50% rispetto ad un software standard di tipo client/server. Questa nuova tecnologia sta dando inizio ad un cambiamento epocale nel mondo dello sviluppo delle applicazioni. Il passaggio che si sta effettuando verso le nuove soluzioni cloud computing consente infatti di creare applicazioni solide in tempi decisamente più brevi e con costi assai inferiori, evitando inoltre tutte le seccature associate a server, soluzioni software singole, aggiornamenti, senza contare il personale necessario a gestire tutto questo. L'obiettivo di questa tesi è quello di mostrare una panoramica della progettazione e dello sviluppo di applicazioni Web nel cloud computing, analizzandone pregi e difetti in relazione alle soluzioni software attuali. Nel primo capitolo viene mostrato un quadro generale in riferimento al cloud, mettendo in luce le sue caratteristiche fondamentali, esaminando la sua architettura e valutando vantaggi e svantaggi di tale piattaforma. Nel secondo capitolo viene presentata la nuova metodologia di progettazione nel cloud, operando prima di tutto un confronto con lo sviluppo dei software standard e analizzando poi l'impatto che il cloud computing opera sulla progettazione. Nel terzo capitolo si entra nel merito della progettazione e sviluppo di applicazioni SaaS, specificandone le caratteristiche comuni ed elencando le piattaforme di rilievo allo stato dell'arte. Si entrerà inoltre nel merito della piattaforma Windows Azure. Nel quarto capitolo viene analizzato nel particolare lo sviluppo di applicazioni SaaS Multi-Tenant, specificando livelli e caratteristiche, fino a spiegare le architetture metadata-driven. Nel quinto capitolo viene operato un confronto tra due possibili approcci di sviluppo di un software cloud, analizzando nello specifico le loro differenze a livello di requisiti non funzionali. Nel sesto capitolo, infine, viene effettuata una panoramica dei costi di progettazione di un'applicazione cloud.
Resumo:
As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. The average consumption of a single data center is equivalent to the energy consumption of 25.000 households. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. This work proposes an automatic method, based on Multi-Objective Particle Swarm Optimization, for the identification of power models of enterprise servers in Cloud data centers. Our approach, as opposed to previous procedures, does not only consider the workload consolidation for deriving the power model, but also incorporates other non traditional factors like the static power consumption and its dependence with temperature. Our experimental results shows that we reach slightly better models than classical approaches, but simul- taneously simplifying the power model structure and thus the numbers of sensors needed, which is very promising for a short-term energy prediction. This work, validated with real Cloud applications, broadens the possibilities to derive efficient energy saving techniques for Cloud facilities.
Resumo:
This thesis presents the formal definition of a novel Mobile Cloud Computing (MCC) extension of the Networked Autonomic Machine (NAM) framework, a general-purpose conceptual tool which describes large-scale distributed autonomic systems. The introduction of autonomic policies in the MCC paradigm has proved to be an effective technique to increase the robustness and flexibility of MCC systems. In particular, autonomic policies based on continuous resource and connectivity monitoring help automate context-aware decisions for computation offloading. We have also provided NAM with a formalization in terms of a transformational operational semantics in order to fill the gap between its existing Java implementation NAM4J and its conceptual definition. Moreover, we have extended NAM4J by adding several components with the purpose of managing large scale autonomic distributed environments. In particular, the middleware allows for the implementation of peer-to-peer (P2P) networks of NAM nodes. Moreover, NAM mobility actions have been implemented to enable the migration of code, execution state and data. Within NAM4J, we have designed and developed a component, denoted as context bus, which is particularly useful in collaborative applications in that, if replicated on each peer, it instantiates a virtual shared channel allowing nodes to notify and get notified about context events. Regarding the autonomic policies management, we have provided NAM4J with a rule engine, whose purpose is to allow a system to autonomously determine when offloading is convenient. We have also provided NAM4J with trust and reputation management mechanisms to make the middleware suitable for applications in which such aspects are of great interest. To this purpose, we have designed and implemented a distributed framework, denoted as DARTSense, where no central server is required, as reputation values are stored and updated by participants in a subjective fashion. We have also investigated the literature regarding MCC systems. The analysis pointed out that all MCC models focus on mobile devices, and consider the Cloud as a system with unlimited resources. To contribute in filling this gap, we defined a modeling and simulation framework for the design and analysis of MCC systems, encompassing both their sides. We have also implemented a modular and reusable simulator of the model. We have applied the NAM principles to two different application scenarios. First, we have defined a hybrid P2P/cloud approach where components and protocols are autonomically configured according to specific target goals, such as cost-effectiveness, reliability and availability. Merging P2P and cloud paradigms brings together the advantages of both: high availability, provided by the Cloud presence, and low cost, by exploiting inexpensive peers resources. As an example, we have shown how the proposed approach can be used to design NAM-based collaborative storage systems based on an autonomic policy to decide how to distribute data chunks among peers and Cloud, according to cost minimization and data availability goals. As a second application, we have defined an autonomic architecture for decentralized urban participatory sensing (UPS) which bridges sensor networks and mobile systems to improve effectiveness and efficiency. The developed application allows users to retrieve and publish different types of sensed information by using the features provided by NAM4J's context bus. Trust and reputation is managed through the application of DARTSense mechanisms. Also, the application includes an autonomic policy that detects areas characterized by few contributors, and tries to recruit new providers by migrating code necessary to sensing, through NAM mobility actions.
Resumo:
Cloud computing has emerged as a major ICT trend and has been acknowledged as a key theme of industry by prominent ICT organisations. However, one of the major challenges that face the cloud computing concept and its global acceptance is how to secure and protect the data that is the property of the user. The geographic location of cloud data storage centres is an important issue for many organisations and individuals due to the regulations and laws that require data and operations to reside in specific geographic locations. Thus, data owners may need to ensure that their cloud providers do not compromise the SLA contract and move their data into another geographic location. This paper introduces an architecture for a new approach for geographic location assurance, which combines the proof of storage protocol (POS) and the distance-bounding protocol. This allows the client to check where their stored data is located, without relying on the word of the cloud provider. This architecture aims to achieve better security and more flexible geographic assurance within the environment of cloud computing.
Resumo:
Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.
Resumo:
Enterprises, both public and private, have rapidly commenced using the benefits of enterprise resource planning (ERP) combined with business analytics and “open data sets” which are often outside the control of the enterprise to gain further efficiencies, build new service operations and increase business activity. In many cases, these business activities are based around relevant software systems hosted in a “cloud computing” environment. “Garbage in, garbage out”, or “GIGO”, is a term long used to describe problems in unqualified dependency on information systems, dating from the 1960s. However, a more pertinent variation arose sometime later, namely “garbage in, gospel out” signifying that with large scale information systems, such as ERP and usage of open datasets in a cloud environment, the ability to verify the authenticity of those data sets used may be almost impossible, resulting in dependence upon questionable results. Illicit data set “impersonation” becomes a reality. At the same time the ability to audit such results may be an important requirement, particularly in the public sector. This paper discusses the need for enhancement of identity, reliability, authenticity and audit services, including naming and addressing services, in this emerging environment and analyses some current technologies that are offered and which may be appropriate. However, severe limitations to addressing these requirements have been identified and the paper proposes further research work in the area.
Resumo:
Cloud computing innebär användning av datorresurser som är tillgängliga via ett nätverk, oftast Internet och är ett område som har vuxit fram i snabb takt under de senaste åren. Allt fler företag migrerar hela eller delar av sin verksamhet till molnet. Sogeti i Borlänge har behov av att migrera sina utvecklingsmiljöer till en molntjänst då drift och underhåll av dessa är kostsamma och tidsödande. Som Microsoftpartners vill Sogeti använda Microsoft tjänst för cloud computing, Windows Azure, för detta syfte. Migration till molnet är ett nytt område för Sogeti och de har inga beskrivningar för hur en sådan process går till. Vårt uppdrag var att utveckla ett tillvägagångssätt för migration av en IT-lösning till molnet. En del av uppdraget blev då att kartlägga cloud computing, dess beståndsdelar samt vilka för- och nackdelar som finns, vilket har gjort att vi har fått grundläggande kunskap i ämnet. För att utveckla ett tillvägagångssätt för migration har vi utfört flera migrationer av virtuella maskiner till Windows Azure och utifrån dessa migrationer, litteraturstudier och intervjuer dragit slutsatser som mynnat ut i ett generellt tillvägagångssätt för migration till molnet. Resultatet har visat att det är svårt att göra en generell men samtidigt detaljerad beskrivning över ett tillvägagångssätt för migration, då scenariot ser olika ut beroende på vad som ska migreras och vilken typ av molntjänst som används. Vi har dock utifrån våra erfarenheter från våra migrationer, tillsammans med litteraturstudier, dokumentstudier och intervjuer lyft vår kunskap till en generell nivå. Från denna kunskap har vi sammanställt ett generellt tillvägagångssätt med större fokus på de förberedande aktiviteter som en organisation bör genomföra innan migration. Våra studier har även resulterat i en fördjupad beskrivning av cloud computing. I vår studie har vi inte sett att någon tidigare har beskrivit kritiska framgångsfaktorer i samband med cloud computing. I vårt empiriska arbete har vi dock identifierat tre kritiska framgångsfaktorer för cloud computing och i och med detta täckt upp en del av kunskapsgapet där emellan.
Resumo:
La rapida crescita di Internet e del numero di host connessi sta portando sempre di più alla nascita di nuove forme di tecnlogie ed applicazioni serverside, facendo del client un thin-client. Il Cloud Computing offre una valida piattaforma a queste nuove tecnologie, ma esso si deve confrontare con diverse problematiche, fra cui la richiesta energetica sempre più crescente, che si ripercuote su un'inevitabile aumento dei gas serra prodotti indirettamente. In questa tesi analizzeremo i problemi energetici legati al Cloud Computing e le possibili soluzioni, andando infine a creare una tassonomia fra i diversi Cloud Computing più importanti sul mercato attuale.
Resumo:
Progettazione ed implementazione di una piattaforma di cloud computing per erogare macchine virtuali, in particolare macchine utilizzate come proxy server da applicazioni VoIP
Resumo:
Il Cloud Computing permette di utilizzare al meglio le risorse distribuite allo scopo di risolvere problemi di computazione su larga scala, e viene distribuito dai provider all'utente finale sotto forma di servizio. Presentati i diversi modelli di distribuzione dei servizi Cloud, si discutono le varie tipologie di servizi offerti. Efficaci meccanismi di elasticità e scalabilità hanno permesso al Cloud Computing di superare lo scoglio iniziale di utilizzo medio dei server al 10%. L'elasticità (rapid elasticity) è l’abilità di acquisire e rilasciare le risorse di un'infrastruttura Cloud su richiesta, l’abilità di un'applicazione di cambiare le sue dimensione durante il suo tempo di esecuzione; la scalabilità è un prerequisito per ottenere una buona elasticità per il sistema, ed è l'abilità che ha un layer di sostenere carichi di lavoro variabili continuando ad adempiere agli obblighi imposti dallo SLA allocando o disallocando risorse computazionali. Le diverse modalità di scaling e il loro utilizzo determinano la scalabilità e di conseguenza l'elasticità del sistema, e sfruttano la virtualizzazione per poter funzionare. Ciò ha portato notevoli benefici perchè aumenta l'utilizzo dei server, migliora l'efficienza del sistema, e dona flessibilità in caso di errori massimizzando il tempo di funzionamento. Sono stati introdotti due esempi di sistemi elastici basati ovviamente sulla virtualizzazione come Amazon Web Services e Microsoft Azure, che dominano il mercato del Cloud Computing e fanno uso dei più efficenti meccanismi d'elasticità. Il cuore di questo elaborato è l'analisi dell'ampliamento dell'adozione del Cloud Computing in azienda Onit Group srl. L'obiettivo è trattare i punti fondamentali per il Cloud Computing, analizzarli e immagazzinare tutte queste conoscenze per analizzare lo stato attuale del Cloud nell'azienda focalizzando l'attenzione sui vantaggi e sugli svantaggi che un sostanziale ampliamento dell'adozione ai sistemi Cloud poteva apportare.
Resumo:
Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.
Resumo:
Low resources in many African locations do not allow many African scientists and physicians to access the latest advances in technology. This deficiency hinders the daily life of African professionals that often cannot afford, for instance, the cost of internet fees or software licenses. The AFRICA BUILD project, funded by the European Commission and formed by four European and four African institutions, intends to provide advanced computational tools to African institutions in order to solve current technological limitations. In the context of AFRICA BUILD we have carried out, a series of experiments to test the feasibility of using Cloud Computing technologies in two different locations in Africa: Egypt and Burundi. The project aims to create a virtual platform to provide access to a wide range of biomedical informatics and learning resources to professionals and researchers in Africa.