766 resultados para Video segmentation
Resumo:
Wooden railway sleeper inspections in Sweden are currently performed manually by a human operator; such inspections are based on visual analysis. Machine vision based approach has been done to emulate the visual abilities of human operator to enable automation of the process. Through this process bad sleepers are identified, and a spot is marked on it with specific color (blue in the current case) on the rail so that the maintenance operators are able to identify the spot and replace the sleeper. The motive of this thesis is to help the operators to identify those sleepers which are marked by color (spots), using an “Intelligent Vehicle” which is capable of running on the track. Capturing video while running on the track and segmenting the object of interest (spot) through this vehicle; we can automate this work and minimize the human intuitions. The video acquisition process depends on camera position and source light to obtain fine brightness in acquisition, we have tested 4 different types of combinations (camera position and source light) here to record the video and test the validity of proposed method. A sequence of real time rail frames are extracted from these videos and further processing (depending upon the data acquisition process) is done to identify the spots. After identification of spot each frame is divided in to 9 regions to know the particular region where the spot lies to avoid overlapping with noise, and so on. The proposed method will generate the information regarding in which region the spot lies, based on nine regions in each frame. From the generated results we have made some classification regarding data collection techniques, efficiency, time and speed. In this report, extensive experiments using image sequences from particular camera are reported and the experiments were done using intelligent vehicle as well as test vehicle and the results shows that we have achieved 95% success in identifying the spots when we use video as it is, in other method were we can skip some frames in pre-processing to increase the speed of video but the segmentation results we reduced to 85% and the time was very less compared to previous one. This shows the validity of proposed method in identification of spots lying on wooden railway sleepers where we can compromise between time and efficiency to get the desired result.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Video transcoding refers to the process of converting a digital video from one format into another format. It is a compute-intensive operation. Therefore, transcoding of a large number of simultaneous video streams requires a large amount of computing resources. Moreover, to handle di erent load conditions in a cost-e cient manner, the video transcoding service should be dynamically scalable. Infrastructure as a Service Clouds currently offer computing resources, such as virtual machines, under the pay-per-use business model. Thus the IaaS Clouds can be leveraged to provide a coste cient, dynamically scalable video transcoding service. To use computing resources e ciently in a cloud computing environment, cost-e cient virtual machine provisioning is required to avoid overutilization and under-utilization of virtual machines. This thesis presents proactive virtual machine resource allocation and de-allocation algorithms for video transcoding in cloud computing. Since users' requests for videos may change at di erent times, a check is required to see if the current computing resources are adequate for the video requests. Therefore, the work on admission control is also provided. In addition to admission control, temporal resolution reduction is used to avoid jitters in a video. Furthermore, in a cloud computing environment such as Amazon EC2, the computing resources are more expensive as compared with the storage resources. Therefore, to avoid repetition of transcoding operations, a transcoded video needs to be stored for a certain time. To store all videos for the same amount of time is also not cost-e cient because popular transcoded videos have high access rate while unpopular transcoded videos are rarely accessed. This thesis provides a cost-e cient computation and storage trade-o strategy, which stores videos in the video repository as long as it is cost-e cient to store them. This thesis also proposes video segmentation strategies for bit rate reduction and spatial resolution reduction video transcoding. The evaluation of proposed strategies is performed using a message passing interface based video transcoder, which uses a coarse-grain parallel processing approach where video is segmented at group of pictures level.
Resumo:
Automatic video segmentation plays a vital role in sports videos annotation. This paper presents a fully automatic and computationally efficient algorithm for analysis of sports videos. Various methods of automatic shot boundary detection have been proposed to perform automatic video segmentation. These investigations mainly concentrate on detecting fades and dissolves for fast processing of the entire video scene without providing any additional feedback on object relativity within the shots. The goal of the proposed method is to identify regions that perform certain activities in a scene. The model uses some low-level feature video processing algorithms to extract the shot boundaries from a video scene and to identify dominant colours within these boundaries. An object classification method is used for clustering the seed distributions of the dominant colours to homogeneous regions. Using a simple tracking method a classification of these regions to active or static is performed. The efficiency of the proposed framework is demonstrated over a standard video benchmark with numerous types of sport events and the experimental results show that our algorithm can be used with high accuracy for automatic annotation of active regions for sport videos.
Resumo:
This paper presents a semi-parametric Algorithm for parsing football video structures. The approach works on a two interleaved based process that closely collaborate towards a common goal. The core part of the proposed method focus perform a fast automatic football video annotation by looking at the enhance entropy variance within a series of shot frames. The entropy is extracted on the Hue parameter from the HSV color system, not as a global feature but in spatial domain to identify regions within a shot that will characterize a certain activity within the shot period. The second part of the algorithm works towards the identification of dominant color regions that could represent players and playfield for further activity recognition. Experimental Results shows that the proposed football video segmentation algorithm performs with high accuracy.
Resumo:
The segmentation of an image aims to subdivide it into constituent regions or objects that have some relevant semantic content. This subdivision can also be applied to videos. However, in these cases, the objects appear in various frames that compose the videos. The task of segmenting an image becomes more complex when they are composed of objects that are defined by textural features, where the color information alone is not a good descriptor of the image. Fuzzy Segmentation is a region-growing segmentation algorithm that uses affinity functions in order to assign to each element in an image a grade of membership for each object (between 0 and 1). This work presents a modification of the Fuzzy Segmentation algorithm, for the purpose of improving the temporal and spatial complexity. The algorithm was adapted to segmenting color videos, treating them as 3D volume. In order to perform segmentation in videos, conventional color model or a hybrid model obtained by a method for choosing the best channels were used. The Fuzzy Segmentation algorithm was also applied to texture segmentation by using adaptive affinity functions defined for each object texture. Two types of affinity functions were used, one defined using the normal (or Gaussian) probability distribution and the other using the Skew Divergence. This latter, a Kullback-Leibler Divergence variation, is a measure of the difference between two probability distributions. Finally, the algorithm was tested in somes videos and also in texture mosaic images composed by images of the Brodatz album
Resumo:
Image segmentation is the process of subdiving an image into constituent regions or objects that have similar features. In video segmentation, more than subdividing the frames in object that have similar features, there is a consistency requirement among segmentations of successive frames of the video. Fuzzy segmentation is a region growing technique that assigns to each element in an image (which may have been corrupted by noise and/or shading) a grade of membership between 0 and 1 to an object. In this work we present an application that uses a fuzzy segmentation algorithm to identify and select particles in micrographs and an extension of the algorithm to perform video segmentation. Here, we treat a video shot is treated as a three-dimensional volume with different z slices being occupied by different frames of the video shot. The volume is interactively segmented based on selected seed elements, that will determine the affinity functions based on their motion and color properties. The color information can be extracted from a specific color space or from three channels of a set of color models that are selected based on the correlation of the information from all channels. The motion information is provided into the form of dense optical flows maps. Finally, segmentation of real and synthetic videos and their application in a non-photorealistic rendering (NPR) toll are presented
Resumo:
Non-Photorealisitc Rendering (NPR) is a class of techniques that aims to reproduce artistic techniques, trying to express feelings and moods on the rendered scenes, giving an aspect of that they had been made "by hand". Another way of defining NPR is that it is the processing of scenes, images or videos into artwork, generating scenes, images or videos that can have the visual appeal of pieces of art, expressing the visual and emotional characteristics of artistic styles. This dissertation presents a new method of NPR for stylization of images and videos, based on a typical artistic expression of the Northeast region of Brazil, that uses colored sand to compose landscape images on the inner surface of glass bottles. This method is comprised by one technique for generating 2D procedural textures of sand, and two techniques that mimic effects created by the artists using their tools. It also presents a method for generating 21 2D animations in sandbox from the stylized video. The temporal coherence within these stylized videos can be enforced on individual objects with the aid of a video segmentation algorithm. The present techniques in this work were used on stylization of synthetic and real videos, something close to impossible to be produced by artist in real life
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents methods for moving object detection in airborne video surveillance. The motion segmentation in the above scenario is usually difficult because of small size of the object, motion of camera, and inconsistency in detected object shape etc. Here we present a motion segmentation system for moving camera video, based on background subtraction. An adaptive background building is used to take advantage of creation of background based on most recent frame. Our proposed system suggests CPU efficient alternative for conventional batch processing based background subtraction systems. We further refine the segmented motion by meanshift based mode association.
Resumo:
Bilayer segmentation of live video in uncontrolled environments is an essential task for home applications in which the original background of the scene must be replaced, as in videochats or traditional videoconference. The main challenge in such conditions is overcome all difficulties in problem-situations (e. g., illumination change, distract events such as element moving in the background and camera shake) that may occur while the video is being captured. This paper presents a survey of segmentation methods for background substitution applications, describes the main concepts and identifies events that may cause errors. Our analysis shows that although robust methods rely on specific devices (multiple cameras or sensors to generate depth maps) which aid the process. In order to achieve the same results using conventional devices (monocular video cameras), most current research relies on energy minimization frameworks, in which temporal and spacial information are probabilistically combined with those of color and contrast.
Resumo:
The increasing use of video editing software has resulted in a necessity for faster and more efficient editing tools. Here, we propose a lightweight high-quality video indexing tool that is suitable for video editing software.
Resumo:
The increasing use of video editing software requires faster and more efficient editing tools. As a first step, these tools perform a temporal segmentation in shots that allows a later building of indexes describing the video content. Here, we propose a novel real-time high-quality shot detection strategy, suitable for the last generation of video editing software requiring both low computational cost and high quality results. While abrupt transitions are detected through a very fast pixel-based analysis, gradual transitions are obtained from an efficient edge-based analysis. Both analyses are reinforced with a motion analysis that helps to detect and discard false detections. This motion analysis is carried out exclusively over a reduced set of candidate transitions, thus maintaining the computational requirements demanded by new applications to fulfill user needs.
Resumo:
Low-cost systems that can obtain a high-quality foreground segmentation almostindependently of the existing illumination conditions for indoor environments are verydesirable, especially for security and surveillance applications. In this paper, a novelforeground segmentation algorithm that uses only a Kinect depth sensor is proposedto satisfy the aforementioned system characteristics. This is achieved by combininga mixture of Gaussians-based background subtraction algorithm with a new Bayesiannetwork that robustly predicts the foreground/background regions between consecutivetime steps. The Bayesian network explicitly exploits the intrinsic characteristics ofthe depth data by means of two dynamic models that estimate the spatial and depthevolution of the foreground/background regions. The most remarkable contribution is thedepth-based dynamic model that predicts the changes in the foreground depth distributionbetween consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that theproposed combination of algorithms is able to obtain a more accurate segmentation of theforeground/background than other state-of-the art approaches.