Foreground segmentation in depth imagery using depth and spatial dynamic models for video surveillance applications


Autoria(s): Blanco Adán, Carlos Roberto del; Mantecón del Valle, Tomás; Camplani, Massimo; Jaureguizar Núñez, Fernando; Salgado Álvarez de Sotomayor, Luis; García Santos, Narciso
Data(s)

01/02/2014

Resumo

Low-cost systems that can obtain a high-quality foreground segmentation almostindependently of the existing illumination conditions for indoor environments are verydesirable, especially for security and surveillance applications. In this paper, a novelforeground segmentation algorithm that uses only a Kinect depth sensor is proposedto satisfy the aforementioned system characteristics. This is achieved by combininga mixture of Gaussians-based background subtraction algorithm with a new Bayesiannetwork that robustly predicts the foreground/background regions between consecutivetime steps. The Bayesian network explicitly exploits the intrinsic characteristics ofthe depth data by means of two dynamic models that estimate the spatial and depthevolution of the foreground/background regions. The most remarkable contribution is thedepth-based dynamic model that predicts the changes in the foreground depth distributionbetween consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that theproposed combination of algorithms is able to obtain a more accurate segmentation of theforeground/background than other state-of-the art approaches.

Formato

application/pdf

Identificador

http://oa.upm.es/37380/

Idioma(s)

eng

Publicador

E.T.S.I. Telecomunicación (UPM)

Relação

http://oa.upm.es/37380/1/INVE_MEM_2014_176708.pdf

http://www.mdpi.com/1424-8220/14/2/1961

TEC2010-20412

info:eu-repo/semantics/altIdentifier/doi/10.3390/s140201961

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

Sensors, ISSN 1424-8220, 2014-02, Vol. 14, No. 2

Palavras-Chave #Telecomunicaciones
Tipo

info:eu-repo/semantics/article

Artículo

PeerReviewed