939 resultados para Variational inequality


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Some results are obtained for non-compact cases in topological vector spaces for the existence problem of solutions for some set-valued variational inequalities with quasi-monotone and lower hemi-continuous operators, and with quasi-semi-monotone and upper hemi-continuous operators. Some applications are given in non-reflexive Banach spaces for these existence problems of solutions and for perturbation problems for these set-valued variational inequalities with quasi-monotone and quasi-semi-monotone operators.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the existence theory for parabolic variational inequalities in weighted L2 spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L2 setting allows us to cover some singular cases, such as optimal stopping for stochastic equations with degenerate diffusion coeficient. As an application of the theory, we consider the pricing of American-style contingent claims. Among others, we treat the cases of assets with stochastic volatility and with path-dependent payoffs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we present a new reformulation of the KKT system associated to a variational inequality as a semismooth equation. The reformulation is derived from the concept of differentiable exact penalties for nonlinear programming. The best theoretical results are presented for nonlinear complementarity problems, where simple, verifiable, conditions ensure that the penalty is exact. We close the paper with some preliminary computational tests on the use of a semismooth Newton method to solve the equation derived from the new reformulation. We also compare its performance with the Newton method applied to classical reformulations based on the Fischer-Burmeister function and on the minimum. The new reformulation combines the best features of the classical ones, being as easy to solve as the reformulation that uses the Fischer-Burmeister function while requiring as few Newton steps as the one that is based on the minimum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, we introduce a necessary sequential Approximate-Karush-Kuhn-Tucker (AKKT) condition for a point to be a solution of a continuous variational inequality, and we prove its relation with the Approximate Gradient Projection condition (AGP) of Garciga-Otero and Svaiter. We also prove that a slight variation of the AKKT condition is sufficient for a convex problem, either for variational inequalities or optimization. Sequential necessary conditions are more suitable to iterative methods than usual punctual conditions relying on constraint qualifications. The AKKT property holds at a solution independently of the fulfillment of a constraint qualification, but when a weak one holds, we can guarantee the validity of the KKT conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many variational inequality problems (VIPs) can be reduced, by a compactification procedure, to a VIP on the canonical simplex. Reformulations of this problem are studied, including smooth reformulations with simple constraints and unconstrained reformulations based on the penalized Fischer-Burmeister function. It is proved that bounded level set results hold for these reformulations under quite general assumptions on the operator. Therefore, it can be guaranteed that minimization algorithms generate bounded sequences and, under monotonicity conditions, these algorithms necessarily nd solutions of the original problem. Some numerical experiments are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper develops the results announced in the Note [14]. Using an eigenvalue problem governed by a variational inequality, we try to unify the theory concerning the post-critical equilibrium state of a thin elastic plate subjected to unilateral conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

* This work was completed while the author was visiting the University of Limoges. Support from the laboratoire “Analyse non-linéaire et Optimisation” is gratefully acknowledged.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let X and Y be Hausdorff topological vector spaces, K a nonempty, closed, and convex subset of X, C: K--> 2(Y) a point-to-set mapping such that for any x is an element of K, C(x) is a pointed, closed, and convex cone in Y and int C(x) not equal 0. Given a mapping g : K --> K and a vector valued bifunction f : K x K - Y, we consider the implicit vector equilibrium problem (IVEP) of finding x* is an element of K such that f (g(x*), y) is not an element of - int C(x) for all y is an element of K. This problem generalizes the (scalar) implicit equilibrium problem and implicit variational inequality problem. We propose the dual of the implicit vector equilibrium problem (DIVEP) and establish the equivalence between (IVEP) and (DIVEP) under certain assumptions. Also, we give characterizations of the set of solutions for (IVP) in case of nonmonotonicity, weak C-pseudomonotonicity, C-pseudomonotonicity, and strict C-pseudomonotonicity, respectively. Under these assumptions, we conclude that the sets of solutions are nonempty, closed, and convex. Finally, we give some applications of (IVEP) to vector variational inequality problems and vector optimization problems. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present paper, we study the quasiequilibrium problem and generalized quasiequilibrium problem of generalized quasi-variational inequality in H-spaces by a new method. Some new equilibrium existence theorems are given. Our results are different from corresponding given results or contain some recent results as their special cases. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the paper we present two continuous selection theorems in hyperconvex metric spaces and apply these to study xed point and coincidence point problems as well as variational inequality problems in hyperconvex metric spaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present an algorithm for the numerical simulation of the cavitation in the hydrodynamic lubrication of journal bearings. Despite the fact that this physical process is usually modelled as a free boundary problem, we adopted the equivalent variational inequality formulation. We propose a two-level iterative algorithm, where the outer iteration is associated to the penalty method, used to transform the variational inequality into a variational equation, and the inner iteration is associated to the conjugate gradient method, used to solve the linear system generated by applying the finite element method to the variational equation. This inner part was implemented using the element by element strategy, which is easily parallelized. We analyse the behavior of two physical parameters and discuss some numerical results. Also, we analyse some results related to the performance of a parallel implementation of the algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transaction costs have a random component in the bid-ask spread. Facing a high bid-ask spread, the consumer has the option to wait for better terms oI' trade, but only by carrying an undesirable portfolio balance. We present the best policy in this case. We pose the control problem and show that the value function is the uni que viscosity solution of the relevant variational inequality. Next, a numerical procedure for the problem is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A bounded-level-set result for a reformulation of the box-constrained variational inequality problem proposed recently by Facchinei, Fischer and Kanzow is proved. An application of this result to the (unbounded) nonlinear complementarity problem is suggested. © 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A variational inequality problem (VIP) satisfying a constraint qualification can be reduced to a mixed complementarity problem (MCP). Monotonicity of the VIP implies that the MCP is also monotone. Introducing regularizing perturbations, a sequence of strictly monotone mixed complementarity problems is generated. It is shown that, if the original problem is solvable, the sequence of computable inexact solutions of the strictly monotone MCP's is bounded and every accumulation point is a solution. Under an additional condition on the precision used for solving each subproblem, the sequence converges to the minimum norm solution of the MCP. Copyright © 2000 by Marcel Dekker, Inc.