936 resultados para Variance decomposition


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dans ce mémoire, nous étudions le problème de l'estimation de la variance pour les estimateurs par double dilatation et de calage pour l'échantillonnage à deux phases. Nous proposons d'utiliser une décomposition de la variance différente de celle habituellement utilisée dans l'échantillonnage à deux phases, ce qui mène à un estimateur de la variance simplifié. Nous étudions les conditions sous lesquelles les estimateurs simplifiés de la variance sont valides. Pour ce faire, nous considérons les cas particuliers suivants : (1) plan de Poisson à la deuxième phase, (2) plan à deux degrés, (3) plan aléatoire simple sans remise aux deux phases, (4) plan aléatoire simple sans remise à la deuxième phase. Nous montrons qu'une condition cruciale pour la validité des estimateurs simplifiés sous les plans (1) et (2) consiste à ce que la fraction de sondage utilisée pour la première phase soit négligeable (ou petite). Nous montrons sous les plans (3) et (4) que, pour certains estimateurs de calage, l'estimateur simplifié de la variance est valide lorsque la fraction de sondage à la première phase est petite en autant que la taille échantillonnale soit suffisamment grande. De plus, nous montrons que les estimateurs simplifiés de la variance peuvent être obtenus de manière alternative en utilisant l'approche renversée (Fay, 1991 et Shao et Steel, 1999). Finalement, nous effectuons des études par simulation dans le but d'appuyer les résultats théoriques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os fundos de investimento imobiliário combinam características tanto do mercado imobiliário, fonte de seus rendimentos, quanto do mercado de capitais, ambiente em que são negociados. O impacto de cada um desses mercados subjacentes no comportamento, desempenho e risco dessa classe de ativos não é, no entanto, ainda claramente definida, sendo um dos grandes temas em análise, tanto na literatura acadêmica, quanto na indústria de fundos internacionais. Em face da significativa expansão dessa alternativa de investimento no mercado brasileiro, no presente estudo foram analisadas as variáveis que influenciam os retornos dos fundos imobiliários brasileiros para uma amostra de fundos listados em Bolsa de Valores de São Paulo, período de 2008-2013. Seguindo a metodologia de Clayton e Mackinnon (2003), os fatores explicativos dos retornos foram decompostos em quatro componentes principais, sendo três fatores de retorno de mercado (mercado de ações, mercado de renda fixa e mercado imobiliário) e risco idiossincrático. De acordo com a estatística descritiva, os fundos imobiliários da amostra apresentaram maior retorno em relação aos demais mercados, exceto em comparação com o mercado imobiliário, porém com menor risco. As análises de correlação, regressão e decomposição da variância indicam que o mercado de ações e o mercado imobiliário direto são, em geral, significativos no modelo, porém explicam apenas cerca de 15% da volatilidade dos retornos dos fundos da amostra. À luz da Moderna Teoria do Portfólio, esses resultados indicam que a inclusão de fundos imobiliários pode ter potencial diversificador numa carteira multi-ativo, seja aumentando o retorno total de uma carteira formada de ações e títulos de renda fixa, sem acréscimo em risco; ou mantendo o retorno dessa carteira, com diminuição da volatilidade, ampliando assim a fronteira eficiente da carteira. Esse efeito questiona o tradicional equilibrium fund de carteiras de investimentos formadas apenas de ações e renda fixa e aponta os fundos imobiliários como uma alternativa de investimento diversificadora, enquanto classe de ativo única. A análise de subamostras por tipologia indica, porém, que o papel diversificador dos fundos imobiliários está atrelado ao tipo de empreendimento que lastreia esse fundo, uma vez que os fatores explicativos e seus impactos nos retornos diferem de uma tipologia para outra. Esse resultado tem importantes implicações no critério de seleção a ser adotado tanto por investidores para seleção de ativos para uma carteira otimizada, como para gestores de fundos imobiliários na formatação e gestão desses produtos. Conclui-se também que os retornos dos fundos, de certo modo, refletem seu caráter híbrido, mas o modelo decomposto em 4 componentes não é suficiente para explicar os retornos dos fundos imobiliários, uma vez que o modelo estendido, demonstrou que outras variáveis, inclusive parâmetros desses próprios mercados, além de variáveis macroeconômicas e as características de cada fundo (eg. market-to-book, tamanho), podem ser responsáveis por explicar considerável parte da variância dos retornos dos FIIs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are both theoretical and empirical reasons for believing that the parameters of macroeconomic models may vary over time. However, work with time-varying parameter models has largely involved Vector autoregressions (VARs), ignoring cointegration. This is despite the fact that cointegration plays an important role in informing macroeconomists on a range of issues. In this paper we develop time varying parameter models which permit cointegration. Time-varying parameter VARs (TVP-VARs) typically use state space representations to model the evolution of parameters. In this paper, we show that it is not sensible to use straightforward extensions of TVP-VARs when allowing for cointegration. Instead we develop a specification which allows for the cointegrating space to evolve over time in a manner comparable to the random walk variation used with TVP-VARs. The properties of our approach are investigated before developing a method of posterior simulation. We use our methods in an empirical investigation involving a permanent/transitory variance decomposition for inflation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyze and quantify co-movements in real effective exchange rates while considering the regional location of countries. More specifically, using the dynamic hierarchical factor model (Moench et al. (2011)), we decompose exchange rate movements into several latent components; worldwide and two regional factors as well as country-specific elements. Then, we provide evidence that the worldwide common factor is closely related to monetary policies in large advanced countries while regional common factors tend to be captured by those in the rest of the countries in a region. However, a substantial proportion of the variation in the real exchange rates is reported to be country-specific; even in Europe country-specific movements exceed worldwide and regional common factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyse the role of time-variation in coefficients and other sources of uncertainty in exchange rate forecasting regressions. Our techniques incorporate the notion that the relevant set of predictors and their corresponding weights, change over time. We find that predictive models which allow for sudden rather than smooth, changes in coefficients significantly beat the random walk benchmark in out-of-sample forecasting exercise. Using innovative variance decomposition scheme, we identify uncertainty in coefficients' estimation and uncertainty about the precise degree of coefficients' variability, as the main factors hindering models' forecasting performance. The uncertainty regarding the choice of the predictor is small.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is considerable variation in the level of fecal egg excretion during Schistosoma mansoni infections. Within a single endemic area, the distribution of egg counts is typically overdispersed, with the majority of eggs excreted coming from a minority of residents. The purpose of this study was to quantify the influence of genetic factors on patterns of fecal egg excretion in a rural study sample in Brazil. Individual fecal egg excretions, expressed in eggs per gram of feces, were determined by the Kato-Katz method on stool samples collected on three different days. Detailed genealogic information was gathered at the time of sampling, which allowed assignment of 461 individuals to 14 pedigrees containing between 3 and 422 individuals. Using a maximum likelihood variance decomposition approach, we performed quantitative genetic analyses to determine if genetic factors could partially account for the observed pattern of fecal egg excretion. The quantitative genetic analysis indicated that between 21-37% of the variation in S. mansoni egg counts was attributable to additive genetic factors and that shared environment, as assessed by common household, accounted for a further 12-21% of the observed variation. A maximum likelihood heritability (h²) estimate of 0.44 ± 0.14 (mean ± SE) was found for the 9,604 second- and higher-degree pairwise relationships in the study sample, which is consistent with the upper limit (37%) of the genetic factor determined in the variance decomposition analysis. These analyses point to the significant influence of additive host genes on the pattern of S. mansoni fecal egg excretion in this endemic area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present paper proposes a model for the persistence of abnormal returnsboth at firm and industry levels, when longitudinal data for the profitsof firms classiffied as industries are available. The model produces a two-way variance decomposition of abnormal returns: (a) at firm versus industrylevels, and (b) for permanent versus transitory components. This variancedecomposition supplies information on the relative importance of thefundamental components of abnormal returns that have been discussed in theliterature. The model is applied to a Spanish sample of firms, obtainingresults such as: (a) there are significant and permanent differences betweenprofit rates both at industry and firm levels; (b) variation of abnormal returnsat firm level is greater than at industry level; and (c) firm and industry levelsdo not differ significantly regarding rates of convergence of abnormal returns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article we examine the convenience of dollarization for Ecuador today. As Ecuador is strongly integrated financially and commercially with the United States, the exchange rate pass-through should be zero. However, we sustain that rising rates of imports from trade partners other than the United States and subsequent real effective exchange rate depreciations are causing the pass-through to move away from zero. Here, in the framework of the Vector Error Correction Model, we analyse the impulse response function and variance decomposition of the inflation variable. We show that the developing economy of Ecuador is importing inflation from its main trading partners, most of them emerging countries with appreciated currencies. We argue that if Ecuador recovered both its monetary and exchange rate instruments it would be able to fight against inflation. We believe such an analysis could be extended to other countries with pegged exchange rate regimes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study is to investigate whether there exists any kind of relationship between the spot and future prices of the different commodities or not. Commodities like cocoa, coffee, crude oil, gold, natural gas and silver are considered from January 3, 2000 to December 31, 2012. For this purpose, ADF test and KPSS test are used in testing the stationarity whereas Johansen Cointegration test is used in testing the long-run relationship. Johansen co-integration test exhibits that there at least 5 co-integrating pairs out of 6 except crude oil. Moreover, the result of Granger Causality supports the fact that if two or more than two time series tend to be co-integrated there exists either uni-directional or bi-directional relationship. However, our results reveled that although there exists the co-integration between the variable, one might not granger causes another .VAR model is also used to measure the proportion of effects. These findings will help the derivative market and arbitragers in developing the strategies to gain the maximum profit in the financial market.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditionally real estate has been seen as a good diversification tool for a stock portfolio due to the lower return and volatility characteristics of real estate investments. However, the diversification benefits of a multi-asset portfolio depend on how the different asset classes co-move in the short- and long-run. As the asset classes are affected by the same macroeconomic factors, interrelationships limiting the diversification benefits could exist. This master’s thesis aims to identify such dynamic linkages in the Finnish real estate and stock markets. The results are beneficial for portfolio optimization tasks as well as for policy-making. The real estate industry can be divided into direct and securitized markets. In this thesis the direct market is depicted by the Finnish housing market index. The securitized market is proxied by the Finnish all-sectors securitized real estate index and by a European residential Real Estate Investment Trust index. The stock market is depicted by OMX Helsinki Cap index. Several macroeconomic variables are incorporated as well. The methodology of this thesis is based on the Vector Autoregressive (VAR) models. The long-run dynamic linkages are studied with Johansen’s cointegration tests and the short-run interrelationships are examined with Granger-causality tests. In addition, impulse response functions and forecast error variance decomposition analyses are used for robustness checks. The results show that long-run co-movement, or cointegration, did not exist between the housing and stock markets during the sample period. This indicates diversification benefits in the long-run. However, cointegration between the stock and securitized real estate markets was identified. This indicates limited diversification benefits and shows that the listed real estate market in Finland is not matured enough to be considered a separate market from the general stock market. Moreover, while securitized real estate was shown to cointegrate with the housing market in the long-run, the two markets are still too different in their characteristics to be used as substitutes in a multi-asset portfolio. This implies that the capital intensiveness of housing investments cannot be circumvented by investing in securitized real estate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since different stock markets have become more integrated during 2000s, investors need new asset classes in order to gain diversification benefits. Commodities have become popular to invest in and thus it is important to examine whether the investors should use commodities as a part for portfolio diversification. This master’s thesis examines the dynamic relationship between Finnish stock market and commodities. The methodology is based on Vector Autoregressive models (VAR). The long-run relationship between Finnish stock market and commodities is examined with Johansen cointegration while short-run relationship is examined with VAR models and Granger causality test. In addition, impulse response test and forecast error variance decomposition are employed to strengthen the results of short-run relationship. The dynamic relationships might change under different market conditions. Thus, the sample period is divided into two sub-samples in order to reveal whether the dynamic relationship varies under different market conditions. The results show that Finnish stock market has stable long-run relationship with industrial metals, indicating that there would not be diversification benefits among the industrial metals. The long-run relationship between Finnish stock market and energy commodities is not as stable as the long-run relationship between Finnish stock market and industrial metals. Long-run relationship was found in the full sample period and first sub-sample which indicate less room for diversification. However, the long-run relationship disappeared in the second sub-sample which indicates diversification benefits. Long-run relationship between Finnish stock market and agricultural commodities was not found in the full sample period which indicates diversification benefits between the variables. However, long-run relationship was found from both sub-samples. The best diversification benefits would be achieved if investor invested in precious metals. No long-run relationship was found from either sample. In the full sample period OMX Helsinki had short-run relationship with most of the energy commodities and industrial metals and the causality was mostly running from equities to commodities. During the first sub period the number of short-run relationships and causality shrunk but during the crisis period the number of short-run relationships and causality increased. The most notable result found was unidirectional causality from gold to OMX Helsinki during the crisis period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The analysis of office market dynamics has generally concentrated on the impact of underlying fundamental demand and supply variables. This paper takes a slightly different approach to many previous examinations of rental dynamics. Within a Vector-Error-Correction framework the empirical analysis concentrates upon the impact of economic and financial variables on rents in the City of London and West End of London office markets. The impulse response and variance decomposition reveal that while lagged rental values and key demand drivers play a highly important role in the dynamics of rents, financial variables are also influential. Stock market performance not only influences the City of London market but also the West End, whilst the default spread plays an important role in recent years. It is argued that both series incorporate expectations about future economic performance and that this is the basis of their influence upon rental values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a new class of neurofuzzy construction algorithms with the aim of maximizing generalization capability specifically for imbalanced data classification problems based on leave-one-out (LOO) cross validation. The algorithms are in two stages, first an initial rule base is constructed based on estimating the Gaussian mixture model with analysis of variance decomposition from input data; the second stage carries out the joint weighted least squares parameter estimation and rule selection using orthogonal forward subspace selection (OFSS)procedure. We show how different LOO based rule selection criteria can be incorporated with OFSS, and advocate either maximizing the leave-one-out area under curve of the receiver operating characteristics, or maximizing the leave-one-out Fmeasure if the data sets exhibit imbalanced class distribution. Extensive comparative simulations illustrate the effectiveness of the proposed algorithms.