994 resultados para Valley Stream


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Humphreys Quadrangle is a portion of the easternmost Ventura Basin underlain by a thick series of Tertiary sedimentary rocks. On these rocks a great variety of geomorphic forms have been molded by the processes of running water typical of a semi-arid climate and by several types of mass movement. Among the different categories of mass movement present, a new type, the siltflow, was observed.

The geomorphic forms of special interest present in the quadrangle are rock cones, open canyonheads, asymmetric canyons, and stream terraces and straths. The author urges the adoption of the definition of strath as that part of an old dissected valley floor, including the floors of tributary valleys, which was not part of the floodplain of the main valley stream.

An old erosion surface, the Puckett Mesa Surface, is present in the Humphreys Quadrangle which is correlative with certain of the older stream terraces. By correlating the variation of gradient and of fill of the stream terraces with post –Wisconsin climatic fluctuations the age of the Puckett Mesa Surface is set at approximately 6000 B.C. This correlation sets the probable age of the older Rancho La Brea deposits at 6000 to 8000 B. C. and the probable age of the Carpenteria brea deposits at 1000 to 1 B. C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Map of New-York Bay and Harbor and the environs : sheet no. 6, founded upon a trigonometrical survey under the direction of F.R. Hassler, superintendent of the Survey of the Coast of the United States ; triangulation by James Ferguson and Edmund Blunt, assistants ; the hydrography under the direction of Thomas R. Gedney, lieutenant U.S. Navy ; the topography by C. Renard and T.A. Jenkins assists. It was published by Survey of the Coast of the United States in 1844-1845. Scale 1:30,000. This layer is image 6 of 6 total images of the six sheet source map, representing the southwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, drainage, land cover, forts, selected buildings, towns, and more. Relief shown by hachures. Depths are shown by soundings and shading. Includes text, table of currents and stations, notes, sailing directions, 4 coastal panoramas and 2 views of Sandy Hook Light. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: New York City and vicinity, H.M. Wilson, geographer in charge ; triangulation by U.S. Coast and Geodetic Survey ; topography by S.H. Bodfish ... [et al. and] U.S. Coast and Geodetic Survey, N.Y. City Government and the Geological Survey of New Jersey. It was published by U.S.G.S. in 1899. Scale 1:62,500. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, cities and towns, villages, forts, cemeteries, aqueducts, boundaries, and more. Relief is shown with standard contour intervals of 20 feet. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Hempstead, N.Y., 1955. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Freeport 1955, Lynbrook, Lawrence, and Jones Inlet 1954 7.5 minute quadrangles. All quadrangles except Jones Inlet were previously compiled by the Army Map Service. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 579A (1953), 579B (1953), 542 (1955) and 1215 (1947). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the development and delivery of a core construction management (CM) unit, which forms the capstone of a four-unit CM stream in an undergraduate programme in the Faculty of Built Environment and Engineering at the Queensland University of Technology. UDB410 (Construction Management) is a final year unit that consolidates skills students have learned throughout their degree, hopefully graduating them as work-ready construction managers. It was developed in consultation with the Queensland Chapter of the Australian Institute of Building (AIB) and is a final year unit in the undergraduate Bachelor of Urban Development (CM) course. The unit uses various tools such as the OSIRIS business database (Bureau van Dijk Electronic Publishing, 2009), the AROUSAL (UK Version) construction business simulation (Lansley, 2009) and the Denison Organisational Culture Survey (Denison, 2000) to facilitate the development of skills in managing a construction company. The objectives of the paper are: • To track the rationale and development of the UDB410 unit sand describe the way in which this final year unit integrates learning from other parts of the course within which it is located as well as capping-off the CM stream of core units; • To highlight the difficulties of blending a balance of technology and management in a single unit; and • To explain how partnering with the construction industry benefited the learning quality of the unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of stable isotope ratios δ18O and δ2H are well established in assessment of groundwater systems and their hydrology. The conventional approach is based on x/y plots and relation to various MWL’s, and plots of either ratio against parameters such as Clor EC. An extension of interpretation is the use of 2D maps and contour plots, and 2D hydrogeological vertical sections. An enhancement of presentation and interpretation is the production of “isoscapes”, usually as 2.5D surface projections. We have applied groundwater isotopic data to a 3D visualisation, using the alluvial aquifer system of the Lockyer Valley. The 3D framework is produced in GVS (Groundwater Visualisation System). This format enables enhanced presentation by displaying the spatial relationships and allowing interpolation between “data points” i.e. borehole screened zones where groundwater enters. The relative variations in the δ18O and δ2H values are similar in these ambient temperature systems. However, δ2H better reflects hydrological processes, whereas δ18O also reflects aquifer/groundwater exchange reactions. The 3D model has the advantage that it displays borehole relations to spatial features, enabling isotopic ratios and their values to be associated with, for example, bedrock groundwater mixing, interaction between aquifers, relation to stream recharge, and to near-surface and return irrigation water evaporation. Some specific features are also shown, such as zones of leakage of deeper groundwater (in this case with a GAB signature). Variations in source of recharging water at a catchment scale can be displayed. Interpolation between bores is not always possible depending on numbers and spacing, and by elongate configuration of the alluvium. In these cases, the visualisation uses discs around the screens that can be manually expanded to test extent or intersections. Separate displays are used for each of δ18O and δ2H and colour coding for isotope values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lockyer Valley in southeast Queensland, Australia, hosts an economically significant alluvial aquifer system which has been impacted by prolonged drought conditions (~1997 to ~ 2009). Throughout this time, the system was under continued groundwater extraction, resulting in severe aquifer depletion. By 2008, much of the aquifer was at <30% of storage but some relief occurred with rains in early 2009. However, between December 2010 and January 2011, most of southeast Queensland experienced unprecedented flooding, which generated significant aquifer recharge. In order to understand the spatial and temporal controls of groundwater recharge in the alluvium, a detailed 3D lithological property model of gravels, sands and clays was developed using GOCAD software. The spatial distribution of recharge throughout the catchment was assessed using hydrograph data from about 400 groundwater observation wells screened at the base of the alluvium. Water levels from these bores were integrated into a catchment-wide 3D geological model using the 3D geological modelling software GOCAD; the model highlights the complexity of recharge mechanisms. To support this analysis, groundwater tracers (e.g. major and minor ions, stable isotopes, 3H and 14C) were used as independent verification. The use of these complementary methods has allowed the identification of zones where alluvial recharge primarily occurs from stream water during episodic flood events. However, the study also demonstrates that in some sections of the alluvium, rainfall recharge and discharge from the underlying basement into the alluvium are the primary recharge mechanisms of the alluvium. This is indicated by the absence of any response to the flood, as well as the observed old radiocarbon ages and distinct basement water chemistry signatures at these locations. Within the 3D geological model, integration of water chemistry and time-series displays of water level surfaces before and after the flood suggests that the spatial variations of the flood response in the alluvium are primarily controlled by the valley morphology and lithological variations within the alluvium. The integration of time-series of groundwater level surfaces in the 3D geological model also enables the quantification of the volumetric change of groundwater stored in the unconfined sections of this alluvial aquifer during drought and following flood events. The 3D representation and analysis of hydraulic and recharge information has considerable advantages over the traditional 2D approach. For example, while many studies focus on singular aspects of catchment dynamics and groundwater-surface water interactions, the 3D approach is capable of integrating multiple types of information (topography, geological, hydraulic, water chemistry and spatial) into a single representation which provides valuable insights into the major factors controlling aquifer processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed 3D lithological model framework was developed using GOCAD software to understand interactions between alluvial, volcanic and GAB aquifers and the spatial and temporal distribution of groundwater recharge to the alluvium of the Lockyer Valley. Groundwater chemistry, isotope data (H20-δ2H and δ18O , 87Sr/86Sr, 3H and 14C) and groundwater level time-series data from approximately 550 observation wells were integrated into the catchment-wide 3D model to assess the recharge processes involved. This approach enabled the identification of zones where recharge to the alluvium primarily occurs from stream water during episodic flood events. Importantly, the study also demonstrates that in some sections of the alluvium recharge is also from storm rainfall and seepage discharge from the underlying GAB aquifers. These other sources of recharge are indicated by (a) the absence of a response of groundwater levels to flooding in some areas, (b) old radiocarbon ages, and (c) distinct bedrock water chemistry and δ2H and δ18O signatures in alluvial groundwater at these locations. Integration of isotopes, water chemistry and time-series displays of groundwater levels before and after the 2010/2011 flood into the 3D model suggest that the spatial variations in the alluvial groundwater response are mostly controlled by valley morphology and lithological (i.e. permeability) variations within the alluvium. Examination of the groundwater level variations in the 3D model also enabled quantification of the volumetric change of groundwater stored in the unconfined alluvial aquifer prior to and post-flood events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lockyer Valley is situated 80 km west of Brisbane and is bounded on the sou th and west by the Great Dividing Range. The valley is a major western sub - catchment of the larger Brisbane River drainage system and is drained by the Lockyer Creek. The Lockyer catchment forms approximately 20% of the total Brisbane River catchment and has an area of around 2900 km2. The Lockyer Creek is an ephemeral drainage system, and the stream and associated alluvium are the main source for irrigation water supply in the Lockyer Valley. The catchment is comprised of a number of well -defined, elongate tributaries in the south, and others in the north, which are more meandering in nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes two new Gomphonema species from the lesser Himalayas, India, with their valve morphology using light and scanning electron microscopy. The two species, Gomphonema juettnerii sp. nov. and G. doonensis sp. nov., were found in Nalota stream in Doon Valley of Uttarakhand State. Main features of G. juettnerii are valve outline, shape of the areolae and striae pattern and presence of stigma. Main features of G. doonensis are rounded headpole, striae made by doubly punctate striae and features in central area. A detailed discussion on doubly punctate striae in members of gomphonemoid diatoms is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results are given of monthly net phytoplankton and zooplankton sampling from a 10 m depth in shelf, slope, and Gulf Stream eddy water along a transect running southeastward from Ambrose Light, New York, in 1976, 1977, and early 1978. Plankton abundance and temperature at 10 m and sea surface salinity at each station are listed. The effects of atmospheric forcing and Gulf Stream eddies on plankton distribution and abundance arc discussed. The frequency of Gulf Stream eddy passage through the New York Bight corresponded with the frequency of tropical-subtropical net phytoplankton in the samples. Gulf Stream eddies injected tropical-subtropical zooplankton onto the shelf and removed shelfwater and its entrained zooplankton. Wind-induced offshore Ekman transport corresponded generally with the unusual timing of two net phytoplankton maxima. Midsummer net phytoplankton maxima were recorded following the passage of Hurricane Belle (August 1976) and a cold front (July 1977). Tropical-subtropical zooplankton which had been injected onto the outer shelf by Gulf Stream eddies were moved to the inner shelf by a wind-induced current moving up the Hudson Shelf Valley. (PDF file contains 47 pages.)