8 resultados para VR1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Gestão do Território

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we examine the potential use of oligonucleotide probes to characterize Neisseria meningitidis serotypes without the use of monoclonal antibodies (MAbs). Antigenic diversity on PorB protein forms the bases of serotyping method. However, the current panel of MAbs underestimated, by at least 50% the PorB variability, presumably because reagents for several PorB variable regions (VRs) are lacking, or because a number of VR variants are not recognized by serotype-defining MAbs12. We analyzed the use of oligonucleotide probes to characterize serotype 10 and serotype 19 of N. meningitidis. The porB gene sequence for the prototype strain of serotype 10 was determined, aligned with 7 other porB sequences from different serotypes, and analysis of individual VRs were performed. The results of DNA probes 21U (VR1-A) and 615U (VR3-B) used against 72 N. meningitidis strains confirm that VR1 type A and VR3 type B encode epitopes for serotype-defined MAbs 19 and 10, respectively. The use of probes for characterizing serotypes possible can type 100% of the PorB VR diversity. It is a simple and rapid method specially useful for analysis of large number of samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Between March and May of 2011, a cluster of three fatal cases of meningococcal sepsis occurred in Andalusia, Spain, in a municipality with a population of around 20,000 inhabitants. The cases were in their mid-teens to early thirties and were notified to the epidemiological surveillance system of Andalusia (Sistema de Vigilancia Epidemiológica de Andalucía, SVEA) during a 68-day period from March through May 2011. All three were infected with the same strain of Neisseria meningitidis serogroup C genosubtype VR1:5-1;VR2:10-8. None of the cases had been previously vaccinated against N. meningitidis serogroup C. Antibiotic post-exposure chemoprophylaxis was administered to close contacts of every diagnosed case. Once the cluster was confirmed, the local population was informed through the media about the control measures taken by the health authorities. The vaccination history against N. meningitidis serogroup C of the population under 25 years-old in the municipality was checked. Vaccination was offered to unimmunised individuals younger than 25 years of age and an additional dose of vaccine was offered to those who had been vaccinated between 2000 and 2006 with a vaccination schedule of three doses before the first year of age. No further cases occurred since the beginning of these actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vanilloid receptor-1 (VR1) is a heat-gated ion channel that is responsible for the burning sensation elicited by capsaicin. A similar sensation is reported by patients with esophagitis when they consume alcoholic beverages or are administered alcohol by injection as a medical treatment. We report here that ethanol activates primary sensory neurons, resulting in neuropeptide release or plasma extravasation in the esophagus, spinal cord or skin. Sensory neurons from trigeminal or dorsal root ganglia as well as VR1-expressing HEK293 cells responded to ethanol in a concentration-dependent and capsazepine-sensitive fashion. Ethanol potentiated the response of VR1 to capsaicin, protons and heat and lowered the threshold for heat activation of VR1 from approximately 42 degrees C to approximately 34 degrees C. This provides a likely mechanistic explanation for the ethanol-induced sensory responses that occur at body temperature and for the sensitivity of inflamed tissues to ethanol, such as might be found in esophagitis, neuralgia or wounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eugenol is a phenylpropene obtained from the essential oils of plants such as clove and basil which has ample use in dentistry. Eugenol possesses analgesic effects that may be related to the inhibition of voltage-dependent Na(+) channels and/or to the activation of TRPV1 receptors or both. In the present study, electrophysiological parameters were taken from the compound action potentials of the isolated rat sciatic nerve and from neurons of the superior cervical ganglion (SCG) impaled with sharp microelectrodes under current-clamp conditions. In the isolated rat sciatic nerve, eugenol inhibited the compound action potential in a concentration-dependent manner. Action potentials recorded from SCG neurons were inhibited by eugenol with an IC(50) of 0.31 mM. At high concentrations (2 mM), during brief applications. eugenol caused significant action potential blockade while it did not interfere with the resting membrane potential or the membrane input resistance. Surprisingly, however, at low eugenol concentrations (0.6 mM), during long time applications, a reversible reduction (by about 50%) in the input membrane resistance was observed, suggesting the possible involvement of a secondary delayed effect of eugenol to reduce neuronal excitability. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All animals need to sense temperature to avoid hostile environments and to regulate their internal homeostasis. A particularly obvious example is that animals need to avoid damagingly hot stimuli. The mechanisms by which temperature is sensed have until recently been mysterious, but in the last couple of years, we have begun to understand how noxious thermal stimuli are detected by sensory neurons. Heat has been found to open a nonselective cation channel in primary sensory neurons, probably by a direct action. In a separate study, an ion channel gated by capsaicin, the active ingredient of chili peppers, was cloned from sensory neurons. This channel (vanilloid receptor subtype 1, VR1) is gated by heat in a manner similar to the native heat-activated channel, and our current best guess is that this channel is the molecular substrate for the detection of painful heat. Both the heat channel and VR1 are modulated in interesting ways. The response of the heat channel is potentiated by phosphorylation by protein kinase C, whereas VR1 is potentiated by externally applied protons. Protein kinase C is known to be activated by a variety of inflammatory mediators, including bradykinin, whereas extracellular acidification is characteristically produced by anoxia and inflammation. Both modulatory pathways are likely, therefore, to have important physiological correlates in terms of the enhanced pain (hyperalgesia) produced by tissue damage and inflammation. Future work should focus on establishing, in molecular terms, how a single ion channel can detect heat and how the detection threshold can be modulated by hyperalgesic stimuli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nerve growth factor (NGF), a member of the neurotrophin family, is crucial for survival of nociceptive neurons during development. Recently, it has been shown to play an important role in nociceptive function in adults. NGF is up-regulated after inflammatory injury of the skin. Administration of exogenous NGF either systemically or in the skin causes thermal hyperalgesia within minutes. Mast cells are considered important components in the action of NGF, because prior degranulation abolishes the early NGF-induced component of hyperalgesia. Substances degranulated by mast cells include serotonin, histamine, and NGF. Blockade of histamine receptors does not prevent NGF-induced hyperalgesia. The effects of blocking serotonin receptors are complex and cannot be interpretable uniquely as NGF losing its ability to induce hyperalgesia. To determine whether NGF has a direct effect on dorsal root ganglion neurons, we have begun to investigate the acute effects of NGF on capsaicin responses of small-diameter dorsal root ganglion cells in culture. NGF acutely conditions the response to capsaicin, suggesting that NGF may be important in sensitizing the response of sensory neurons to heat (a process that is thought to operate via the capsaicin receptor VR1). We also have found that ligands for the trkB receptor (brain-derived neurotrophic factor and neurotrophin-4/5) acutely sensitize nociceptive afferents and elicit hyperalgesia. Because brain-derived neurotrophic factor is up-regulated in trkA positive cells after inflammatory injury and is transported anterogradely, we consider it to be a potentially important peripheral component involved in neurotrophin-induced hyperalgesia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capsaicin (vanilloid) receptor, VR1, is a sensory neuron-specific ion channel that serves as a polymodal detector of pain-producing chemical and physical stimuli. It has been proposed that ATP, released from different cell types, initiates the sensation of pain by acting predominantly on nociceptive ionotropic purinoceptors located on sensory nerve terminals. In this study, we examined the effects of extracellular ATP on VR1. In cells expressing VR1, ATP increased the currents evoked by capsaicin or protons through activation of metabotropic P2Y1 receptors in a protein kinase C-dependent pathway. The involvement of Gq/11-coupled metabotropic receptors in the potentiation of VR1 response was confirmed in cells expressing both VR1 and M1 muscarinic acetylcholine receptors. In the presence of ATP, the temperature threshold for VR1 activation was reduced from 42°C to 35°C, such that normally nonpainful thermal stimuli (i.e., normal body temperature) were capable of activating VR1. This represents a novel mechanism through which the large amounts of ATP released from damaged cells in response to tissue trauma might trigger the sensation of pain.