976 resultados para VORTEX-INDUCED MOTION (VIM)
Resumo:
An analysis methodology is presented as well as a comparison of results obtained from vortex-induced motion (VIM) model tests of the MonoGoM platform, a monocolumn floating unit designed for the Gulf of Mexico. The choice of scale between the model and the platform in which the tests took place was a very important issue that took into account the basin dimensions and mooring design. The tests were performed in three different basins: the IPT Towing Tank in Brazil (Sept. 2005), the NMRI Model Ship Experimental Towing Tank in Japan (Mar. 2007), and the NMRI Experimental Tank in Japan (Jun. 2008). The purpose is to discuss the most relevant issues regarding the concept, execution, and procedures to comparatively analyze the results obtained from VIM model tests, such as characteristic motion amplitudes, motion periods, and forces. The results pointed out the importance of considering the 2DOF in the model tests, i.e., the coexistence of the motions in both in-line and transverse directions. The approach employed in the tests was designed to build a reliable data set for comparison with theoretical and numerical models for VIM prediction, especially that of monocolumn platforms. [DOI: 10.1115/1.4003494]
Resumo:
Vortex-induced motion (VIM) is a highly nonlinear dynamic phenomenon. Usual spectral analysis methods, using the Fourier transform, rely on the hypotheses of linear and stationary dynamics. A method to treat nonstationary signals that emerge from nonlinear systems is denoted Hilbert-Huang transform (HHT) method. The development of an analysis methodology to study the VIM of a monocolumn production, storage, and offloading system using HHT is presented. The purposes of the present methodology are to improve the statistics analysis of VIM. The results showed to be comparable to results obtained from a traditional analysis (mean of the 10% highest peaks) particularly for the motions in the transverse direction, although the difference between the results from the traditional analysis for the motions in the in-line direction showed a difference of around 25%. The results from the HHT analysis are more reliable than the traditional ones, owing to the larger number of points to calculate the statistics characteristics. These results may be used to design risers and mooring lines, as well as to obtain VIM parameters to calibrate numerical predictions. [DOI: 10.1115/1.4003493]
Resumo:
An experimental study on Vortex-Induced Motion (VIM) of the semi-submersible platform concept with four square columns is presented. Model tests were carried out to check the influence of different headings and hull appendages (riser supports located at the pontoons; fairleads and the mooring stretches located vertically at the external column faces; and hard pipes located vertically at the internal column faces). The results comprise in-line, transverse and yaw motions, as well as combined motions in the XY plane, drag and lift forces and spectral analysis. The main results showed that VIM in the transverse direction occurred in a range of reduced velocity 4.0 up to 14.0 with amplitude peaks around reduced velocities around 7.0 and 8.0. The largest transverse amplitudes obtained were around 40% of the column width for 30 degrees and 45 degrees incidences. Another important result observed was a considerable yaw motion oscillation, in which a synchronization region could be identified as a resonance phenomenon. The largest yaw motions were verified for the 0 degrees incidence and the maxima amplitudes around 4.5 degrees. The hull appendages located at columns had the greatest influence on the VIM response of the semi-submersible. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Vortex-induced motion (VIM) is a specific way for naming the vortex-induced vibration (VIV) acting on floating units. The VIM phenomenon can occur in monocolumn production, storage and offloading system (MPSO) and spar platforms, structures presenting aspect ratio lower than 4 and unity mass ratio, i.e., structural mass equal to the displaced fluid mass. These platforms can experience motion amplitudes of approximately their characteristic diameters, and therefore, the fatigue life of mooring lines and risers can be greatly affected. Two degrees-of-freedom VIV model tests based on cylinders with low aspect ratio and small mass ratio have been carried out at the recirculating water channel facility available at NDF-EPUSP in order to better understand this hydro-elastic phenomenon. The tests have considered three circular cylinders of mass ratio equal to one and different aspect ratios, respectively L/D = 1.0, 1.7, and 2.0, as well as a fourth cylinder of mass ratio equal to 2.62 and aspect ratio of 2.0. The Reynolds number covered the range from 10 000 to 50 000, corresponding to reduced velocities from 1 to approximately 12. The results of amplitude and frequency in the transverse and in-line directions were analyzed by means of the Hilbert-Huang transform method (HHT) and then compared to those obtained from works found in the literature. The comparisons have shown similar maxima amplitudes for all aspect ratios and small mass ratio, featuring a decrease as the aspect ratio decreases. Moreover, some changes in the Strouhal number have been indirectly observed as a consequence of the decrease in the aspect ratio. In conclusion, it is shown that comparing results of small-scale platforms with those from bare cylinders, all of them presenting low aspect ratio and small mass ratio, the laboratory experiments may well be used in practical investigation, including those concerning the VIM phenomenon acting on platforms. [DOI: 10.1115/1.4006755]
Resumo:
A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-induced Vibrations (VIV). Its nonlinear hydrodynamic effects oil the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-ill, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is ill good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.
Resumo:
This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of vortex shedding is modeled based on the classical van der Pol equation, combined with the equation for the oscillatory motion of the body. An appropriate approach is developed to estimate the empirical parameters in the wake oscillator model. The present predicted results are compared to the experimental data and previous wake oscillator Model results. Good agreement with experimental results is found.
Resumo:
This paper describes an experimental investigation into the effect of restricting the vortex-induced vibrations of a spring-mounted rigid cylinder by means of stiff mechanical endstops. Cases of both asymmetric and symmetric restraint are investigated. Results show that limiting the amplitude of the vibrations strongly affects the dynamics of the cylinder, particularly when the offset is small. Fluid-structure interaction is profoundly affected, and the well-known modes of vortex shedding observed with a linear elastic system are modified or absent. There is no evidence of lock-in, and the dominant impact frequency corresponds to a constant Strouhal number of 0.18. The presence of an endstop on one side of the motion can lead to large increases in displacements in the opposite direction. Attention is also given to the nature of the developing chaotic motion, and to impact velocities, which in single-sided impacts approach the maximum velocity of a cylinder with linear compliance undergoing VIV at lock-in. With symmetrical endstops, impact velocities were about one-half of this. Lift coefficients are computed from an analysis of the cylinder’s motion between impacts.
Resumo:
Vortex-induced motions (VIM) of floating structures are very relevant for the design of mooring and riser systems. In the design phase, spar and monocolumn VIM behavior, as well as semisubmersible and tension leg platform flow-induced motions, is studied and evaluated. This paper provides a checklist of topics and evidence from a number of sources to justify the selection that should be considered when designing spars or monocolumn platforms regarding the VIM phenomenon. An overview of the influential aspects of the VIM is presented such as heading, external appendages of the hull, concomitant presence of waves and currents, motion suppressor, draft condition (immersed portion of the hull), and external damping due to the presence of risers. Previous works concerning the VIM studies on spar and monocolumn platforms are also addressed. Whenever possible, the results of experiments from diverse authors on this matter are presented and compared. [DOI: 10.1115/1.4003698]
Resumo:
In the present work, we study the transverse vortex-induced vibrations of an elastically mounted rigid cylinder in a fluid flow. We employ a technique to accurately control the structural damping, enabling the system to take on both negative and positive damping. This permits a systematic study of the effects of system mass and damping on the peak vibration response. Previous experiments over the last 30 years indicate a large scatter in peak-amplitude data ($A^*$) versus the product of mass–damping ($\alpha$), in the so-called ‘Griffin plot’. A principal result in the present work is the discovery that the data collapse very well if one takes into account the effect of Reynolds number ($\mbox{\textit{Re}}$), as an extra parameter in a modified Griffin plot. Peak amplitudes corresponding to zero damping ($A^*_{{\alpha}{=}0}$), for a compilation of experiments over a wide range of $\mbox{\textit{Re}}\,{=}\,500-33000$, are very well represented by the functional form $A^*_{\alpha{=}0} \,{=}\, f(\mbox{\textit{Re}}) \,{=}\, \log(0.41\,\mbox{\textit{Re}}^{0.36}$). For a given $\mbox{\textit{Re}}$, the amplitude $A^*$ appears to be proportional to a function of mass–damping, $A^*\propto g(\alpha)$, which is a similar function over all $\mbox{\textit{Re}}$. A good best-fit for a wide range of mass–damping and Reynolds number is thus given by the following simple expression, where $A^*\,{=}\, g(\alpha)\,f(\mbox{\textit{Re}})$: \[ A^* \,{=}\,(1 - 1.12\,\alpha + 0.30\,\alpha^2)\,\log (0.41\,\mbox{\textit{Re}}^{0.36}). \] In essence, by using a renormalized parameter, which we define as the ‘modified amplitude’, $A^*_M\,{=}\,A^*/A^*_{\alpha{=}0}$, the previously scattered data collapse very well onto a single curve, $g(\alpha)$, on what we refer to as the ‘modified Griffin plot’. There has also been much debate over the last three decades concerning the validity of using the product of mass and damping (such as $\alpha$) in these problems. Our results indicate that the combined mass–damping parameter ($\alpha$) does indeed collapse peak-amplitude data well, at a given $\mbox{\textit{Re}}$, independent of the precise mass and damping values, for mass ratios down to $m^*\,{=}\,1$.
Resumo:
对单向水流作用下近壁管道横向涡激振动进行了实验模拟,重点探讨了管道与壁面间隙比(e/D)对管道涡激振动幅值和涡激振动频率响应特性的影响规律.实验结果表明,管道与壁面间隙宽度对管道涡激振动特性有较明显影响.在较大间隙比(e/D>0.66)下,管道振幅随着Vr数的增大先快速增长到最大值,然后平缓下降;在振动初期(即Vr数较小时),管道振动频率变化基本符合Strouhal规律;在振动中后期(即Vr数较大时),管道振动频率变化不符合Strouhal规律,而在管道固有频率附近缓慢增长.在较小间隙比(e/D<0.30)下,管道振幅随Vr数的增大先平缓上升到最大值,随后较快速下降;在振动初期,管道振动频率变化不遵循Strouhal规律;在整个振动范围内,与较大间隙比情况相比,随着Vr数增加,管道振动频率增长幅度明显较大.
Resumo:
Unlike most previous studies on vortex- induced vibrations of a cylinder far from a boundary, this paper focuses On the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results Of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand ( 1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex- induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of V, and the dimensionless amplitude ratio A(max)/D become larger with the decrease of the gap-to-diameter ratio e/D. Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while the pipeline frequency responses are affected slightly by the stability parameter.
Resumo:
Based on similarity analyses, a series of experiments have been conducted with a newly established hydro-elastic facility to investigate the transverse vortex-induced vibrations (VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean currents. Typical characteristics of coupling processes between pipe vibration and soil scour in the currents have been summarized for Case 1: pipe is laid above seabed and Case 11: pipe is partially embedded in seabed on the basis of the experimental observations. Pipe vibration and the corresponding local scour are usually two coupled physical processes leading to an equilibrium state. The influence of initial gap-to-diameter ratio (e(0)/D) on the interaction between pipe vibration and local scour has been studied. Experimental results show that the critical values of V-r for the initiation of VIVs of the pipe near an erodible sand bed get bigger with decreasing initial gap-to-diameter ratio within the examined range of e(0)/D (-0.25 < e(0)/D < 0.75). The comparison of the pipe vibrations near an erodible soil with those near a rigid boundary and under wall-free conditions indicates that the vibration amplitudes of the pipe near an erodible sand bed are close to the curve fit under wall-free conditions; nevertheless, for the same stability parameter, the maximum amplitudes for the VIV coupled with local scour increase with the increase of initial gap-to-diameter ratio. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A vortex-induced vibration (VIV) model is presented for predicting the nonlinear dynamic response of submerged floating tunnel (SFT) tethers which are subjected to wave, current and tunnel oscillatory displacements at their upper end in horizontal and vertical directions. A nonlinear fluid force formula is introduced in this model, and the effect of the nonlinearity of tether is investigated. First, the tunnel is stationary and the tether vibrates due to the vortices shedding. The calculated results show that the cross-flow amplitude of VIV decreases compared with the linear model. However the in-line amplitude of VIV increases. Next, the periodical oscillation of tunnel is considered. The oscillation caused by wave forces plays the roles of parametric exciter and forcing exciter to the VIV of tether. The time history of displacement of the tether mid-span is obtained by the proposed model. It is shown that the in-line amplitude increases obviously and the corresponding frequency is changed. The cross-flow amplitude exhibits a periodic behavior.
Resumo:
In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carried out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-critical flow regime; (2) with increasing gap-to-diameter ratio (e (0)/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/f (n) ) has a slight variation for the case of larger values of e (0)/D (e (0)/D > 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylinder between the larger gap-to-diameter ratios (e (0)/D > 0.66) and the smaller ones (e (0)/D < 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of V (r) number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of V (r) and the frequency ratio (f/f (n) ) become larger.
Resumo:
The dynamic characteristics of slender cable often present serried modes with low frequencies due to large structure flexibility resulted from high aspect ratio (ratio of length to diameter of cable), while the flow velocity distributes non-uniformly along the cable span actually in practical engineering. Therefore, the prediction of the vertex-induce vibration of slender cable suffered from multi-mode and high-mode motions becomes a challenging problem. In this paper a prediction approach based on modal energy is developed to deal with multi-mode lock-in. Then it is applied to the modified wake-oscillator model to predict the VIV displacement and stress responses of cable in non-uniform flow field. At last, illustrative examples are given of which the VIV response of flexible cable in nonlinear shear flow field is analyzed. The effects of flow velocity on VIV are explored. Our results show that both displacement and stress responses become larger as the flow velocity increasing; especially higher stress response companied with higher frequency vibration should be paid enough attention in practical design of SFT because of its remarkable influence on structure fatigue life.