984 resultados para VENTILATION: mechanically controlled


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Pressure controlled ventilation (PCV) is available in anesthesia machines, but there are no studies on its use during CO 2 pneumoperitoneum (CPP). This study aimed at evaluating pressure-controlled ventilation and hemodynamic and ventilatory changes during CPP, as compared to conventional volume controlled ventilation (VCV). METHODS: This study involved 16 dogs anesthetized with thiopental, fentanyl and pancuronium, which were randomly assigned to two groups: VC - volume controlled ventilation (n=8) and PC - pressure controlled ventilation (n=8). Hemodynamic and ventilatory parameters were monitored and recorded in 4 moments: M1 (before CPP), M2 (30 minutes after CPP = 10 mmHg), M3 (30 minutes after CPP=15 mmHg) and M4 (30 minutes after deflation). RESULTS: With CPP, there has been significant increase in tidal volume in PC group; there has been increase in airway pressures (peak and plateau), decrease in compliance with increase in CPP pressure, increase in heart rate, maintenance of mean blood pressure with higher values in the VC group in all stages; there was also increase in right atrium pressure with significant decrease after deflation, decrease in arterial pH with minor variations in PC group, greater arterial pCO 2 stability in PC group, and no significant changes in arterial pO 2. CONCLUSIONS: There were some differences in hemodynamic and ventilatory data between both ventilation control modes (VC and PC). It is possible to use pressure controlled ventilation during CPP, but the anesthesiologist must monitor and take a close look at alveolar ventilation, adjusting inspiratory pressure to ensure proper CO 2 elimination and oxygenation. © Sociedade Brasileira de Anestesiologia, 2005.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Spontaneous ventilation, mechanical controlled ventilation, apneic intermittent ventilation, and jet ventilation are commonly used during interventional suspension microlaryngoscopy. The aim of this study was to investigate specific complications of each technique, with special emphasis on transtracheal and transglottal jet ventilation. METHODS: The authors performed a retrospective single-institution analysis of a case series of 1,093 microlaryngoscopies performed in 661 patients between January 1994 and January 2004. Data were collected from two separate prospective databases. Feasibility and complications encountered with each technique of ventilation were analyzed as main outcome measures. RESULTS: During 1,093 suspension microlaryngoscopies, ventilation was supplied by mechanical controlled ventilation via small endotracheal tubes (n = 200), intermittent apneic ventilation (n = 159), transtracheal jet ventilation (n = 265), or transglottal jet ventilation (n = 469). Twenty-nine minor and 4 major complications occurred. Seventy-five percent of the patients with major events had an American Society of Anesthesiologists physical status classification of III. Five laryngospasms were observed with apneic intermittent ventilation. All other 24 complications (including 7 barotrauma) occurred during jet ventilation. Transtracheal jet ventilation was associated with a significantly higher complication rate than transglottal jet ventilation (P < 0.0001; odds ratio, 4.3 [95% confidence interval, 1.9-10.0]). All severe complications were related to barotraumas resulting from airway outflow obstruction during jet ventilation, most often laryngospasms. CONCLUSIONS: The use of a transtracheal cannula was the major independent risk factor for complications during jet ventilation for interventional microlaryngoscopy. The anesthetist's vigilance in clinically detecting and preventing outflow airway obstruction remains the best prevention of barotrauma during subglottic jet ventilation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

JUSTIFICATIVA E OBJETIVOS: O objetivo desta pesquisa foi estudar os efeitos agudos do contraste radiológico em situações de restrição de volume, avaliando-se os efeitos renais e cardiovasculares após a injeção intra-arterial de contraste radiológico de alta osmolaridade. MÉTODO: Participaram do estudo 16 cães anestesiados com tiopental sódico (15 mg.kg-1) e fentanil (15 µg.kg-1) em bolus, seguido de infusão contínua nas doses de 40 µg.kg-1.min-1 (tiopental sódico) e 0,1 µg.kg-1.min-1 (fentanil). Foi feita hidratação com solução de glicose a 5% (0,03 mL.kg-1.min-1) e a ventilação pulmonar foi controlada mecanicamente com ar comprimido. Foram verificados os seguintes atributos: freqüência cardíaca (FC); pressão arterial média (PAM); pressão da veia cava inferior (PVI); débito cardíaco (DC); hematócrito (Ht); fluxo plasmático efetivo renal (FPER); fluxo sangüíneo renal (FSR); ritmo de filtração glomerular (RFG); fração de filtração; resistência vascular renal (RVR); volume urinário (VU); osmolaridade plasmática e urinária; depuração osmolar, depuração de água livre e depuração de sódio e de potássio; sódio e potássio plasmáticos; excreção urinária e fracionária de sódio e potássio e temperatura retal. Estes atributos foram avaliados em quatro momentos: 30 (M1), 60 (M2), 90 (M3) e 120 (M4) minutos após o início da infusão de para-aminohipurato de sódio e creatinina (início da experiência). No momento 2, no grupo G1 foi feita injeção intra-arterial de solução fisiológica a 0,9% (1,24 mL.kg-1), e no grupo G2 foi injetado contraste radiológico (1,24 mL.kg-1) pela mesma via. RESULTADOS: O grupo G1 apresentou aumento da FC, do FPER, do FSR, da osmolaridade plasmática, da depuração de sódio e da excreção urinária de sódio; apresentou ainda diminuição da osmolaridade urinária, do potássio plasmático, da depuração de potássio e da temperatura retal. No grupo G2 ocorreu aumento da FC, da RVR, do VU, da depuração osmolar, da depuração de sódio e da excreção urinária e fracionária de sódio; ocorreu também redução do (a): hematócrito, ritmo de filtração glomerular, fração de filtração, osmolaridade urinária, depuração de água livre, sódio e potássio urinários, potássio plasmático e temperatura retal. CONCLUSÕES: Neste estudo, conclui-se que a injeção intra-arterial do contraste radiológico causou efeito bifásico na função renal. Inicialmente, provocou aumento da diurese e da excreção de sódio, mas, posteriormente, houve piora das condições hemodinâmicas e, conseqüentemente, da função renal, com aumento da resistência vascular renal e diminuição do ritmo de filtração glomerular.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and Objectives - Inhalational anesthetics have a mild analgesic effect. The reduction of alveolar concentration (MAC) of potent volatile anesthesics by increasing plasma concentrations of opioids is desired in inhalational anesthesia. The purpose of this study was to determine the role of sufentanil in reducing sevoflurane and isoflurane MAC. Methods - Thirty eight adult patients of both genders, physical status ASA I or II, submitted to major abdominal procedures were randomly allocated into two groups. Group I (n = 24) received inahalational anesthesia with sevoflurane and Group II (n = 14) received inhalational anesthesia with isoflurane, both diluted in a mixture of N2O (1 liter) and O2 (0.5 liter). A semi-closed system with CO2 absorber and partial reinhalation was used. Ventilation was mechanically controlled. Sufentanil infusion was administered aiming at obtaining 0.5 ng.ml-1 of plasma concentration. Sufentanil plasma concentration was previously calculated by a computer software. End-tidal concentrations were obtained through a gas analyzer and measured at 15 minutes (M1), 30 minutes (M2), 60 minutes (M3), 90 minutes (M4) and 120 minutes (M5). Systolic and diastolic blood pressure (SBP and DBP) and heart rate (RR) were measured during the same periods with the addition of M0 (pre-anesthetic period). Hourly consumption of the inhalational anesthetic agent (IAC), extubation time (ET = time between admission to the recovery room and extubation) and stay in the post anesthesia recovery room (PA-RR) were also measured. Results - Type and duration of surgeries were similar for both groups. There were no statistically significant differences in MAC, SBP, DBP, RR, IAC, TE and PA-RR between groups. Systolic blood pressure in group I (sevoflurane) showed differences among periods F = 3.82 p < O.05; (M2 = M3)(M4 = M5) and M1 had a intermediate value. MAC in group I showed differences among periods F = 9.0 p < 0.05; M1 < M3. MAC in group II also showed differences among periods F = 13.03 p < O.05; M1 < (M2,M3,M4,M5). Conclusions - Both groups had similar behavior when associated to sufentanil in major abdominal surgeries. Group II showed a higher cardiac and circulatory stability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: Automated weaning modes are available in some mechanical ventilators, but no studies compared them hitherto. We compared the performance of 3 automated modes under standard and challenging situations. Methods: We used a lung simulator to compare 3 automated modes, adaptive support ventilation (ASV), mandatory rate ventilation (MRV), and Smartcare, in 6 situations, weaning success, weaning failure, weaning success with extreme anxiety, weaning success with Cheyne-Stokes, weaning success with irregular breathing, and weaning failure with ineffective efforts. Results: The 3 modes correctly recognized the situations of weaning success and failure, even when anxiety or irregular breathing were present but incorrectly recognized weaning success with Cheyne-Stokes. MRV incorrectly recognized weaning failure with ineffective efforts. Time to pressure support (PS) stabilization was shorter for ASV (1-2 minutes for all situations) and MRV (1-7 minutes) than for Smartcare (8-78 minutes). ASV had higher rates of PS oscillations per 5 minutes (4-15), compared with Smartcare (0-1) and MRV (0-12), except when extreme anxiety was present. Conclusions: Smartcare, ASV, and MRV were equally able to recognize weaning success and failure, despite the presence of anxiety or irregular breathing but performed incorrectly in the presence of Cheyne-Stokes. PS behavior over the time differs among modes, with ASV showing larger and more frequent PS oscillations over the time. Clinical studies are needed to confirm our results. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important experimental result, as yet poorly understood, is that mechanical stirring can significantly enhance the strength of horizontal convection. A contentious issue is whether this necessarily implies that the mechanical stirring replaces the buoyancy forcing as the main source of energy driving the observed overturning circulation, as has been suggested for the Atlantic meridional overturning circulation (AMOC). In this paper, rigorous energetics considerations and idealized numerical experiments reveal that the rate at which the surface buoyancy forcing supplies energy to the fluid, as measured by the production rate of available potential energy G(APE), does not solely depend upon the buoyancy forcing, as is often implicitly assumed, but also upon the vertical stratification, such that the deeper the thermocline depth, the larger G(APE). This suggests that mechanical stirring enhances horizontal convection because it causes more energy to be extracted from the buoyancy forcing. It does so by enhancing turbulent mixing, which allows surface heating to reach greater depths, which increases the thermocline depth and hence G(APE). This paper therefore proposes a new hypothesis, namely that mechanically stirred horizontal convection and the AMOC are best described as mechanically controlled heat engines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A hipoxemia pode ocorrer durante a Colangiopancreatografia Endoscópica Retrógrada (CPER) porque alguma analgesia e sedação precisam ser realizadas. O posicionamento do paciente em pronação dificulta a ventilação adequada. Um estudo transversal controlado foi utilizado para investigar possíveis fatores preditivos de dessaturação de oxigênio em pacientes submetidos à CPER sedados com midazolam associado à meperidina. No total, 186 pacientes foram monitorados continuamente com oxímetro de pulso. A regressão de Cox adaptada por Braslow foi utilizada para identificar fatores preditivos de dessaturação relacionados ao paciente e ao exame. As variáveis estudadas foram: idade, gênero, hematócrito e hemoglobina, uso de escopolamina, exame diagnóstico ou terapêutico, midazolam ( média 0,07mg/Kg) e meperidina (média 0,7mg/Kg), escores da Sociedade Americana de Anestesiologistas (ASA) e tempo de exame. Dos 186 pacientes, 113 não dessaturaram (60,8%), 22(11,8%) apresentaram dessaturação moderada (SpO2≤92%) e 51 (27,4%) apresentaram dessaturação grave (SpO2≤90%). As variáveis preditivas de dessaturação de oxigênio detectadas foram idade ≥60 anos (p=0,004; RR:1,5;IC:1,12-1,93) e escore ASA III (p=0,013) As variáveis idade (60 anos ou mais) e escore ASA III foram identificadas como de risco para dessaturação em pacientes que realizam CPER sob sedação consciente. Estes pacientes necessitam de maior monitoração para saturação e hipoventilação pela enfermagem, alertando para a depressão respiratória. A utilização do oxímetro de pulso e solicitação de respiração profunda durante o exame auxilia a diminuir estes riscos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increased metabolic rate during digestion is associated with changes in arterial acid-base parameters that are caused by gastric acid secretion (the 'alkaline tide'). Net transfer of HCl to the stomach lumen causes an increase in plasma HCO3- levels, but arterial pH does not change because of a ventilatory compensation that counters the metabolic alkalosis. It seems, therefore, that ventilation is controlled to preserve pH and not P-CO2, during the postprandial period. To investigate this possibility, we determined arterial acid-base parameters and the metabolic response to digestion in the snake Boa constrictor, where gastric acid secretion was inhibited pharmacologically by oral administration of omeprazole. The increase in oxygen consumption of omeprazole-treated snakes after ingestion of 30% of their own body mass was quantitatively similar to the response in untreated snakes, although the peak of the metabolic response occurred later (36 h versus 24 h). Untreated control animals exhibited a large increase in arterial plasma HCO3- concentration of approximately 12 mmol 1(-1), but arterial pH only increased by 0.12 pH units because of a simultaneous increase in arterial P-CO2 by about 10 mmHg. Omeprazole virtually abolished the changes in arterial pH and plasma HCO3- concentration during digestion and there was no increase in arterial P-CO2. The increased arterial P-CO2 during digestion is not caused, therefore, by the increased metabolism during digestion or a lower ventilatory responsiveness to ventilatory stimuli during a presumably relaxed state in digestion. Furthermore, the constant arterial P-CO2, in the absence of an alkaline tide, of omeprazole-treated snakes strongly suggests that pH rather than P-CO2 normally affects chemoreceptor activity and ventilatory drive.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Lung deposition of intravenous cephalosporins is low. The lung deposition of equivalent doses of ceftazidime administered either intravenously or by ultrasonic nebulization using either nitrogen-oxygen or helium-oxygen as the carrying gas of the aerosol was compared in ventilated piglets with and without experimental bronchopneumonia. Methods: Five piglets with noninfected lungs and 5 piglets with Pseudomonas aeruginosa experimental bronchopneumonia received 33 mg/kg ceftazidime intravenously. Ten piglets with noninfected lungs and 10 others with experimental P. aeruginosa bronchopneumonia received 50 mg/kg ceftazidime by ultrasonic nebulization. In each group, the ventilator was operated in half of the animals with a 65%/35% helium-oxygen or nitrogen-oxygen mixture. Animals were killed, and multiple lung specimens were sampled for measuring ceftazidime lung tissue concentrations by high-performance liquid chromatography. Results: As compared with intravenous administration, nebulization of ceftazidime significantly increased lung tissue concentrations (17 ± 13 vs. 383 ± 84 μg/g in noninfected piglets and 10 ± 3 vs. 129 ± 108 μg/g in piglets with experimental bronchopneumonia; P < 0.001). The use of a 65%/35% helium-oxygen mixture induced a 33% additional increase in lung tissue concentrations in noninfected piglets (576 ± 141 μg/g; P < 0.001) and no significant change in infected piglets (111 ± 104 μg/g). Conclusion: Nebulization of ceftazidime induced a 5- to 30-fold increase in lung tissue concentrations as compared with intravenous administration. Using a helium-oxygen mixture as the carrying gas of the aerosol induced a substantial additional increase in lung deposition in noninfected piglets but not in piglets with experimental bronchopneumonia. © 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The craze for faster and smaller electronic devices has never gone down and this has always kept researchers on their toes. Following Moore’s law, which states that the number of transistors in a single chip will double in every 18 months, today “30 million transistors can fit into the head of a 1.5 mm diameter pin”. But this miniaturization cannot continue indefinitely due to the ‘quantum leakage’ limit in the thickness of the insulating layer between the gate electrode and the current carrying channel. To bypass this limitation, scientists came up with the idea of using vastly available organic molecules as components in an electronic device. One of the primary challenges in this field was the ability to perform conductance measurements across single molecular junctions. Once that was achieved the focus shifted to a deeper understanding of the underlying physics behind the electron transport across these molecular scale devices. Our initial theoretical approach is based on the conventional Non-Equilibrium Green Function(NEGF) formulation, but the self-energy of the leads is modified to include a weighting factor that ensures negligible current in the absence of a molecular pathway as observed in a Mechanically Controlled Break Junction (MCBJ) experiment. The formulation is then made parameter free by a more careful estimation of the self-energy of the leads. The calculated conductance turns out to be atleast an order more than the experimental values which is probably due to a strong chemical bond at the metal-molecule junction unlike in the experiments. The focus is then shifted to a comparative study of charge transport in molecular wires of different lengths within the same formalism. The molecular wires, composed of a series of organic molecules, are sanwiched between two gold electrodes to make a two terminal device. The length of the wire is increased by sequentially increasing the number of molecules in the wire from 1 to 3. In the low bias regime all the molecular devices are found to exhibit Ohmic behavior. However, the magnitude of conductance decreases exponentially with increase in length of the wire. In the next study, the relative contribution of the ‘in-phase’ and the ‘out-of-phase’ components of the total electronic current under the influence of an external bias is estimated for the wires of three different lengths. In the low bias regime, the ‘out-of-phase’ contribution to the total current is minimal and the ‘in-phase’ elastic tunneling of the electrons is responsible for the net electronic current. This is true irrespective of the length of the molecular spacer. In this regime, the current-voltage characteristics follow Ohm’s law and the conductance of the wires is found to decrease exponentially with increase in length which is in agreement with experimental results. However, after a certain ‘off-set’ voltage, the current increases non-linearly with bias and the ‘out-of-phase’ tunneling of electrons reduces the net current substantially. Subsequently, the interaction of conduction electrons with the vibrational modes as a function of external bias in the three different oligomers is studied since they are one of the main sources of phase-breaking scattering. The number of vibrational modes that couple strongly with the frontier molecular orbitals are found to increase with length of the spacer and the external field. This is consistent with the existence of lowest ‘off-set’ voltage for the longest wire under study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis is reported of a new series of oligo(aryleneethynylene) (OAE) derivatives of up to ca. 6 nm in molecular length (OAE9) using iterative Pd-mediated Sonogashira cross-coupling methodology. The oligo-p-phenyleneethynylene cores of the molecular wires are functionalized at both termini with pyridyl units for attachment to gold leads. The molecular structures determined by single-crystal X-ray analysis are reported for OAE4, OAE5, OAE7, and OAE8a. The charge transport characteristics of derivatives OAE3–OAE9 in single-molecular junctions have been studied using the mechanically controlled break junction technique. The data demonstrate that the junction conductance decreases with increasing molecular length. A transition from coherent transport via tunneling to a hopping mechanism is found for OAE wires longer than ca. 3 nm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Employing a scanning tunneling microscopy based beak junction technique and mechanically controlled break junction experiments, we investigated tolane (diphenylacetylene)-type single molecular junctions having four different anchoring groups (SH, pyridyl (PY), NH2, and CN) at a solid/liquid interface. The combination of current–distance and current–voltage measurements and their quantitative statistical analysis revealed the following sequence for junction formation probability and stability: PY > SH > NH2 > CN. For all single molecular junctions investigated, we observed the evolution through multiple junction configurations, with a particularly well-defined binding geometry for PY. The comparison of density functional theory type model calculations and molecular dynamics simulations with the experimental results revealed structure and mechanistic details of the evolution of the different types of (single) molecular junctions upon stretching quantitatively.