55 resultados para Ureter
Resumo:
Anencefalia é o defeito do tubo neural mais severo. A morfologia do ureter de fetos anencéfalos é desconhecida. O objetivo deste trabalho é analisar a estrutura do ureter de fetos humanos normais e anencéfalos (FHA). Nós estudamos 16 ureteres de 8 fetos sem anomalias congênitas (4 masculinos e 4 femininos) com idades entre 16 e 27 semanas pós concepção (SPC) e 14 ureteres de 7 FHA (4 masculinos e 3 femininos) com idades entre 19 e 33 SPC. Os ureteres foram dissecados e emblocados em parafina. Foram feitos cortes com 5 m e depois corados com Tricrômico de Masson, para quantificação das células de músculo liso (CML) e determinação da área da a luz do ureter, espessura e diâmetro. As amostras também foram coradas com Resorcina Fucsina de Weigert ( para observação das fibras elásticas) e Vermelho de Picro Sirius com polarização e análise imunohistoquímica das fibras do colágeno tipo III. Os dados da quantificação do músculo foram expressos em densidade volumétrica (Vv-%). As imagens foram capturadas com microscópio Olympus BX51 e câmera Olympus DP70. A análise morfológica da área do lúmen, espessura e diâmetro foram feitas usando o software Image J. As médias foram comparadas usando o teste t não pareado (p<0.05). O epitélio do ureter estava bem preservado em ambos os grupos, e não houve diferença entre os grupos. Não observamos fibras do sistema elástico em qualquer ureter analisados. Concentração de músculo liso (Vv) não diferiram significativamente (p = 0,4413) em FHA (12% 1,628) e grupo controle (13,51% 0,9231). A área de luz ureteral foi significativamente menor (p = 0,0341) em FHA (6365μm 1,282), quando comparado ao grupo controle (20,170 5,480 mM). O diâmetro ureteral foi significativamente menor (p = 0,0294) em FHA (166.7μm 10,99) quando comparado ao grupo controle (240 26,6 mM). A espessura ureteral foi significativamente menor (p = 0,0448) em FHA (30.57μm 2,034), quando comparado ao grupo controle (7,453 47.49μm). Colágeno tipo III foi observado em maior quantidade nos ureteres da FHA. Alterações estruturais ureterais nos fetos anencéfalos foram significativas em nosso estudo. O ureter de fetos com anencefalia mostraram mais concentração de colágeno tipo III, menor diâmetro, área e espessura. Nervos ureterais em FHA podem ser modificados devido a lesão cerebral com consequente dano no controle dos nervos ureterais. Isto pode levar a alterações estruturais no ureter de fetos anencéfalos.
Resumo:
Transitional-cell carcinoma of the renal pelvis or ureter is a relatively rare disease. Several risk factors are smoking, occupational carcinogens, analgesic abuse or Balkan nephropathy. The grade and stage of the disease have the most significant impact on the outcome. The treatment of renal pelvis and ureter tumours is open or laparoscopic surgery varying from conservative to more extensive surgical procedures, i.e. radical nephroureterectomy including removal of the contents of Gerota's fascia with ipsilateral ureter and a cuff of bladder at its distal extent. Most available data are from retrospective studies and surgery is the mainstay of treatment. Chemotherapy and/or radiation therapy are possible adjuvant or primary treatment for selected patients; however, prospective studies are needed to confirm their use.
Resumo:
Tubulo-interstitial fibrosis is a constant feature of chronic renal failure and it is suspected to contribute importantly to the deterioration of renal function. In the fibrotic kidney there exists, besides normal fibroblasts, a large population of myofibroblasts, which are supposedly responsible for the increased production of intercellular matrix. It has been proposed that myofibroblasts in chronic renal failure originate from the transformation of tubular cells via epithelial-mesenchymal transition (EMT) or from infiltration by bone marrow-derived precursors. Little attention has been paid to the possibility of a transformation of resident fibroblasts into myofibroblasts in renal fibrosis. Therefore we examined the fate of resident fibroblasts in the initial phase of renal fibrosis in the classical model of unilateral ureter obstruction (UUO) in the rat. Rats were perfusion-fixed on days 1, 2, 3 and 4 after ligature of the right ureter. Starting from 1 day of UUO an increasing expression of alpha-smooth muscle actin (alphaSMA) in resident fibroblasts was revealed by immunofluorescence and confirmed by the observation of bundles of microfilaments and webs of intermediate filaments in the electron microscope. Inversely, there was a decreased expression of 5'-nucleotidase (5'NT), a marker of renal cortical fibroblasts. The RER became more voluminous, suggesting an increased synthesis of matrix. Intercellular junctions, a characteristic feature of myofibroblasts, became more frequent. The mitotic activity in fibroblasts was strongly increased. Renal tubules underwent severe regressive changes but the cells retained their epithelial characteristics and there was no sign of EMT. In conclusion, after ureter ligature, resident peritubular fibroblasts proliferated and they showed progressive alterations, suggesting a transformation in myofibroblasts. Thus the resident fibroblasts likely play a central role in fibrosis in that model.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
In many instances, kidney dysgenesis results as a secondary consequence to defects in the development of the ureter. Through the use of mouse genetics a number of genes associated with such malformations have been identified, however, the cause of many other abnormalities remain unknown. In order to identify novel genes involved in ureter development we compared gene expression in embryonic day (E) 12.5, E15.5 and postnatal day (P) 75 ureters using the Compugen mouse long oligo microarrays. A total of 248 genes were dynamically upregulated and 208 downregulated between E12.5 and P75. At E12.5, when the mouse ureter is comprised of a simple cuboidal epithelium surrounded by ureteric mesenchyme, genes previously reported to be expressed in the ureteric mesenchyme, foxC1 and foxC2 were upregulated. By E15.5 the epithelial layer develops into urothelium, impermeable to urine, and smooth muscle develops for the peristaltic movement of urine towards the bladder. The development of these two cell types coincided with the upregulation of UPIIIa, RAB27b and PPAR gamma reported to be expressed in the urothelium, and several muscle genes, Acta1, Tnnt2, Myocd, and Tpm2. In situ hybridization identified several novel genes with spatial expression within the smooth muscle, Acta1; ureteric mesenchyme and smooth muscle, Thbs2 and Co15a2; and urothelium, Kcnj8 and Adh1. This study marks the first known report defining global gene expression of the developing mouse ureter and will provide insight into the molecular mechanisms underlying kidney and lower urinary tract malformations. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The retrocaval ureter is a rare congenital entity, classically managed with open pyeloplasty techniques. The experience obtained with the laparoscopic approach of other more frequent causes of ureteropelvic junction (UPJ) obstruction has opened the method for the minimally invasive approach of the retrocaval ureter. In our paper, we describe a clinical case of a right retrocaval ureter managed successfully with laparoscopic dismembered pyeloplasty. The main standpoints of the procedure are described. Our results were similar to others published by other urologic centers, which demonstrates the safety and feasibility of the procedure for this condition.
Resumo:
Hereditary non-polyposis colorectal carcinoma (HNPCC; Lynch syndrome) is among the most common hereditary cancers in man and a model of cancers arising through deficient DNA mismatch repair (MMR). It is inherited in a dominant manner with predisposing germline mutations in the MMR genes, mainly MLH1, MSH2, MSH6 and PMS2. Both copies of the MMR gene need to be inactivated for cancer development. Since Lynch syndrome family members are born with one defective copy of one of the MMR genes in their germline, they only need to acquire a so called second hit to inactivate the MMR gene. Hence, they usually develop cancer at an early age. MMR gene inactivation leads to accumulation of mutations particularly in short repeat tracts, known as microsatellites, causing microsatellite instability (MSI). MSI is the hallmark of Lynch syndrome tumors, but is present in approximately 15% of sporadic tumors as well. There are several possible mechanisms of somatic inactivation (i.e. the second hit ) of MMR genes, for instance deletion of the wild-type copy, leading to loss of heterozygosity (LOH), methylation of promoter regions necessary for gene transcription, or mitotic recombination or gene conversion. In the Lynch syndrome tumors carrying germline mutations in the MMR gene, LOH was found to be the most frequent mechanism of somatic inactivation in the present study. We also studied MLH1/MSH2 deletion carriers and found that somatic mutations identical to the ones in the germline occurred frequently in colorectal cancers and were also present in extracolonic Lynch syndrome-associated tumors. Chromosome-specific marker analysis implied that gene conversion, rather than mitotic recombination or deletion of the respective gene locus accounted for wild-type inactivation. Lynch syndrome patients are predisposed to certain types of cancers, the most common ones being colorectal, endometrial and gastric cancer. Gastric cancer and uroepithelial tumors of bladder and ureter were observed to be true Lynch syndrome tumors with MMR deficiency as the driving force of tumorigenesis. Brain tumors and kidney carcinoma, on the other hand, were mostly MSS, implying the possibility of alternative routes of tumor development. These results present possible implications in clinical cancer surveillance. In about one-third of families suspected of Lynch syndrome, mutations in MMR genes are not found, and we therefore looked for alternative mechanisms of predisposition. According to our results, large genomic deletions, mainly in MSH2, and germline epimutations in MLH1, together explain a significant fraction of point mutation-negative families suspected of Lynch syndrome and are associated with characteristic clinical and family features. Our findings have important implications in the diagnosis and management of Lynch syndrome families.
Resumo:
A ureter primary explant technique, using porcine tissue sections was developed to study bystander effects under in vivo like conditions where dividing and differentiated cells are present. Targeted irradiations of ureter tissue fragments were performed with the Gray Cancer Institute charged particle microbeam at a single location (2 microm precision) with 10 3He2+ particles (5 MeV; LET 70 keV/microm). After irradiation the ureter tissue section was incubated for 7 days allowing explant outgrowth to be formed. Differentiation was estimated using antibodies to Uroplakin III, a specific marker of terminal urothelial differentiation. Even although only a single region of the tissue section was targeted, thousands of additional cells were found to undergo bystander-induced differentiation in the explant outgrowth. This resulted in an overall increase in the fraction of differentiated cells from 63.5+/-5.4% to 76.6+/-5.6%. These changes are much greater than that observed for the induction of damage in this model. One interpretation of these results is that in the tissue environment, differentiation is a much more significant response to targeted irradiation and potentially a protective mechanism.