965 resultados para Universal testing machine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetorheological dampers are intrinsically nonlinear devices, which make the modeling and design of a suitable control algorithm an interesting and challenging task. To evaluate the potential of magnetorheological (MR) dampers in control applications and to take full advantages of its unique features, a mathematical model to accurately reproduce its dynamic behavior has to be developed and then a proper control strategy has to be taken that is implementable and can fully utilize their capabilities as a semi-active control device. The present paper focuses on both the aspects. First, the paper reports the testing of a magnetorheological damper with an universal testing machine, for a set of frequency, amplitude, and current. A modified Bouc-Wen model considering the amplitude and input current dependence of the damper parameters has been proposed. It has been shown that the damper response can be satisfactorily predicted with this model. Second, a backstepping based nonlinear current monitoring of magnetorheological dampers for semi-active control of structures under earthquakes has been developed. It provides a stable nonlinear magnetorheological damper current monitoring directly based on system feedback such that current change in magnetorheological damper is gradual. Unlike other MR damper control techniques available in literature, the main advantage of the proposed technique lies in its current input prediction directly based on system feedback and smooth update of input current. Furthermore, while developing the proposed semi-active algorithm, the dynamics of the supplied and commanded current to the damper has been considered. The efficiency of the proposed technique has been shown taking a base isolated three story building under a set of seismic excitation. Comparison with widely used clipped-optimal strategy has also been shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perspex machine arose from the unification of projective geometry with the Turing machine. It uses a total arithmetic, called transreal arithmetic, that contains real arithmetic and allows division by zero. Transreal arithmetic is redefined here. The new arithmetic has both a positive and a negative infinity which lie at the extremes of the number line, and a number nullity that lies off the number line. We prove that nullity, 0/0, is a number. Hence a number may have one of four signs: negative, zero, positive, or nullity. It is, therefore, impossible to encode the sign of a number in one bit, as floating-, point arithmetic attempts to do, resulting in the difficulty of having both positive and negative zeros and NaNs. Transrational arithmetic is consistent with Cantor arithmetic. In an extension to real arithmetic, the product of zero, an infinity, or nullity with its reciprocal is nullity, not unity. This avoids the usual contradictions that follow from allowing division by zero. Transreal arithmetic has a fixed algebraic structure and does not admit options as IEEE, floating-point arithmetic does. Most significantly, nullity has a simple semantics that is related to zero. Zero means "no value" and nullity means "no information." We argue that nullity is as useful to a manufactured computer as zero is to a human computer. The perspex machine is intended to offer one solution to the mind-body problem by showing how the computable aspects of mind and. perhaps, the whole of mind relates to the geometrical aspects of body and, perhaps, the whole of body. We review some of Turing's writings and show that he held the view that his machine has spatial properties. In particular, that it has the property of being a 7D lattice of compact spaces. Thus, we read Turing as believing that his machine relates computation to geometrical bodies. We simplify the perspex machine by substituting an augmented Euclidean geometry for projective geometry. This leads to a general-linear perspex-machine which is very much easier to pro-ram than the original perspex-machine. We then show how to map the whole of perspex space into a unit cube. This allows us to construct a fractal of perspex machines with the cardinality of a real-numbered line or space. This fractal is the universal perspex machine. It can solve, in unit time, the halting problem for itself and for all perspex machines instantiated in real-numbered space, including all Turing machines. We cite an experiment that has been proposed to test the physical reality of the perspex machine's model of time, but we make no claim that the physical universe works this way or that it has the cardinality of the perspex machine. We leave it that the perspex machine provides an upper bound on the computational properties of physical things, including manufactured computers and biological organisms, that have a cardinality no greater than the real-number line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The objective of the present study was to evaluate a prefabricated intraradicular threaded pure titanium post, designed and developed at the Sao Jose dos Campos School of Dentistry - UNESP, Brazil. This new post was designed to minimize stresses observed with prefabricated post systems and to improve cost-benefits. Materials and and methods: Fracture resistance testing of the post/core/root complex, fracture analysis by microscopy and stress analysis by the finite element method were used for post evaluation. The following four prefabricated metal post systems were analyzed: group 1, experimental post; group 2, modification of the experimental post; group 3, Flexi Post, and group 4, Para Post. For the analysis of fracture resistance, 40 bovine teeth were randomly assigned to the four groups (n=10) and used for the fabrication of test specimens simulating the situation in the mouth. The test specimens were subjected to compressive strength testing until fracture in an EMIC universal testing machine. After fracture of the test specimens, their roots were sectioned and analyzed by microscopy. For the finite element method, specimens of the fracture resistance test were simulated by computer modeling to determine the stress distribution pattern in the post systems studied. Results: The fracture test presented the following averages and standard deviation: G1 (45.63 +/- 8.77), G2 (49.98 +/- 7.08), G3 (43.84 +/- 5.52), G4 (47.61 +/- 7.23). Stress was homogenously distributed along the body of the intraradicular post in group 1, whereas high stress concentrations in certain regions were observed in the other groups. These stress concentrations in the body of the post induced the same stress concentration in root dentin. Conclusions: The experimental post (original and modified versions) presented similar fracture resistance and better results in the stress analysis when compared with the commercial post systems tested (08/2008PA/CEP).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To determine whether universal primers alone can deliver similar levels of adhesion of resin cement to zirconia ceramic when compared to their application in conjunction with airborne-particle abrasion.Materials and Methods: Sintered zirconia blocks (N = 160) (Lava, 3M ESPE), (5.25 x 5.25 x 3 mm(3)) were embedded in acrylic resin, polished, and randomly distributed into 16 groups (n = 10 per group), according to the factors "universal primer" (8 levels) and "air-particle abrasion" (2 levels): 1. ctr: control, without application of a universal primer; 2. AP: Alloy Primer; 3. MP: Monobond Plus; 4. MZP: Metal Zirconia Primer; 5. MZ: MZ Primer; 6. Sg: Signum Zirconia Bond; 7. SbU: Singlebond Universal; 8. ZP: Z Prime Plus. The universal primers were also used after air abrasion (A) of zirconia to form the following 8 groups: Ctr-A, AP-A, MP-A, MZP-A, MZ-A, Sg-A, SbU-A, and ZP-A. After ultrasonic cleaning, air abrasion was performed using Al2O3 particles (110 mu m, 2.5 bar, 20 s at 10 mm) in a chairside air-abrasion device. After ultrasonic cleaning again, universal primers were applied according to each manufacturer's recommendation. The resin cement (RelyX ARC, 3M ESPE) was built up incrementally and photo-polymerized on the zirconia surface using a silicone mold (empty set = 3.5, height = 3 mm). All specimens were stored in distilled water (60 days at 37 degrees C) and then subjected to shear bond strength testing (SBS) in a universal testing machine (1 mm/min). On a separate set of zirconia specimens, contact angle measurements were made using the sessile drop technique with a goniometer after the application of universal primers on control and air-abraded zirconia surfaces. Data (MPa) were analyzed using one-way ANOVA, Tukey's test, and Student's t-test (alpha = 0.05).Results: When universal primers were used alone, SbU presented significantly higher mean SBS (19.5 +/- 5.8) that did the other primers (0 to 9.9 +/- 6.6) (p = 0.001). When air abraded, the groups AP-A (14.1 +/- 6.1), MP-A (15.9 +/- 5.4), ZP-A (16.9 +/- 7.3), SG-A (19.1 +/- 2.1), SbU-A (12 +/- 1.5) showed significant differences (p = 0.03). Adhesive performance of all universal primers was enhanced after air abrasion, with the exception of the SbU and MZ primers. After air abrasion, contact angle measurements were lower for the each primer (without air abrasion: 28.9 to 83.9; with air abrasion: 27.1 to 63.0), except for MZP.Conclusion: Air abrasion with 110 mu m Al2O3 followed by universal primer application increased the bond strength of tested resin cement to zirconia, with the exception of SbU and MZ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. The null hypothesis was that mechanical testing systems used to determine polymerization stress (sigma(pol)) would rank a series of composites similarly. Methods. Two series of composites were tested in the following systems: universal testing machine (UTM) using glass rods as bonding substrate, UTM/acrylic rods, "low compliance device", and single cantilever device ("Bioman"). One series had five experimental composites containing BisGMA:TEGDMA in equimolar concentrations and 60, 65, 70, 75 or 80 wt% of filler. The other series had five commercial composites: Filtek Z250 (3M ESPE), Filtek A110 (3M ESPE), Tetric Ceram (Ivoclar), Heliomolar (Ivoclar) and Point 4 (Kerr). Specimen geometry, dimensions and curing conditions were similar in all systems. sigma(pol) was monitored for 10 min. Volumetric shrinkage (VS) was measured in a mercury dilatometer and elastic modulus (E) was determined by three-point bending. Shrinkage rate was used as a measure of reaction kinetics. ANOVA/Tukey test was performed for each variable, separately for each series. Results. For the experimental composites, sigma(pol) decreased with filler content in all systems, following the variation in VS. For commercial materials, sigma(pol) did not vary in the UTM/acrylic system and showed very few similarities in rankings in the others tests system. Also, no clear relationships were observed between sigma(pol) and VS or E. Significance. The testing systems showed a good agreement for the experimental composites, but very few similarities for the commercial composites. Therefore, comparison of polymerization stress results from different devices must be done carefully. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy. The effects of environmental temperature and loading rates on impact and tension behavior of the alloy were also investigated. Design/methodology/approach: The tests were conducted using an Instron universal testing machine. The loading speed was changed from 1 mm/min to 300 mm/min to gain a better understanding of the effect of strain rate. To understand the failure behavior of this alloy at different environmental temperatures, Charpy impact test was conducted in a range of temperatures (-40~35°C). Plane strain fracture toughness (KIC) was evaluated using compact tension (CT) specimen. To gain a better understanding of the failure mechanisms, all fracture surfaces were observed using scanning electron microscopy (SEM). In addition, fatigue behavior of this alloy was estimated using tension test under tension-tension condition at 30 Hz. The stress amplitude was selected in the range of 20~50 MPa to obtain the S-N curve. Findings: The tensile test indicated that the mechanical properties were not sensitive to the strain rates applied (3.3x10-4~0.1) and the plastic deformation was dominated by twining mediated slip. The impact energy is not sensitive to the environmental temperature. The plane strain fracture toughness and fatigue limit were evaluated and the average values were 7.6 MPa.m1/2 and 25 MPa, respectively. Practical implications: Tested materials AM60 Mg alloy can be applied among others in automotive industry aerospace, communication and computer industry. Originality/value: Many investigations have been conducted to develop new Mg alloys with improved stiffness and ductility. On the other hand, relatively less attention has been paid to the failure mechanisms of Mg alloys, such as brittle fracture and fatigue, subjected to different environmental or loading conditions. In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drying of food materials offers a significant increase in the shelf life of food materials, along with the modification of quality attributes due to simultaneous heat and mass transfer. Shrinkage and variations in porosity are the common micro and microstructural changes that take place during the drying of mostly the food materials. Although extensive research has been carried out on the prediction of shrinkage and porosity over the time of drying, no single model exists which consider both material properties and process condition in the same model. In this study, an attempt has been made to develop and validate shrinkage and porosity models of food materials during drying considering both process parameters and sample properties. The stored energy within the sample, elastic potential energy, glass transition temperature and physical properties of the sample such as initial porosity, particle density, bulk density and moisture content have been taken into consideration. Physical properties and validation have been made by using a universal testing machine ( Instron 2kN), a profilometer (Nanovea) and a pycnometer. Apart from these, COMSOL Multiphysics 4.4 has been used to solve heat and mass transfer physics. Results obtained from models of shrinkage and porosity is quite consistent with the experimental data. Successful implementation of these models would ensure the use of optimum energy in the course of drying and better quality retention of dried foods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biphasic calcium phosphates have received considerable attention due to their optimum dissolution rate in the human body after implantation. These materials are composed of hydroxyapatite (HA) and resorbable tricalcium phosphate (TCP). In the present investigation, HA whiskers are reinforced into TCP to enhance the mechanical properties of this biphasic composite. Various amounts (30-50 wt%) HA whiskers are reinforced in TCP matrix. Microstructural characterization has been carried out using field-emission scanning electron microscope. Mechanical properties have been investigated by microindentation in a universal testing machine (UTM). As TCP is resorbable, it will dissolve in body fluid and there is a strong possibility for the faceted HA whiskers to interact with functional groups present in the body fluid surroundings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the mechanical behaviour of CSM (chopped strand mat)-based GFRC (glass fibre-reinforced composite) plates with single and multiple hemispheres under compressive loads has been investigated both experimentally and numerically. The basic stress-strain behaviours arc identified with quasi-static tests on two-ply coupon laminates and short cylinders, and these are followed up with compressive tests in a UTM (universal testing machine) on single- and multiple-hemisphere plates. The ability of an explicit LS-DYNA solver in predicting the complex material behaviour of composite hemispheres, including failure, is demonstrated. The relevance and scalability of the present class of structural components as `force-multipliers' and `energy-multipliers' have been justified by virtue of findings that as the number of hemispheres in a panel increased from one to four, peak load and average absorbed energy rose by factors of approximately four and six, respectively. The performance of a composite hemisphere has been compared to similar-sized steel and aluminium hemispheres, and the former is found to be of distinctly higher specific energy than the steel specimen. A simulation-based study has also been carried out on a composite 2 x 2-hemisphere panel under impact loads and its behaviour approaching that of an ideal energy absorber has been predicted. In summary, the present investigation has established the efficacy of composite plates with hemispherical force multipliers as potential energy-absorbing countermeasures and the suitability of CAE (computer-aided engineering) for their design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and non-invasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blocked diisocyanate crosslinked chitosan membrane was modified by incorporating different mass% of NaY zeolite. The physico-chemical properties of resulting composite membranes were studied using Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The mechanical properties of the membranes were studied using universal testing machine (UTM). After measuring the equilibrium swelling, membranes were subjected to pervaporation for separation of water-isopropanol mixtures. Both flux and selectivity were increased with increasing NaY zeolite content in the membranes. The membrane containing 40 mass% of NaY zeolite exhibited the highest separation selectivity of 11,241 with a flux of 11.37 x 10(-2) kg/m(2) h for 10 mass% of water in the feed. The total flux and flux of water are almost overlapping each other, suggesting that these membranes could be effectively used to break the azeotropic point of water-isopropanol mixture. From the temperature dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. All the composite membranes exhibited lower activation energy compared to crosslinked membrane, indicating that the permeants require less energy during the process because of molecular sieving action attributed to the presence of sodalite and super cages in the framework of Nay zeolite. The Henry's mode of sorption dominates the process, giving an endothermic contribution. (C) 2014 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical behaviors of 2124, Al-5Cu, Al-Li and 6061 alloys reinforced by silicon carbide particulates, together with 15%SiCw/6061 alloy, were studied under the quasi-static and impact loading conditions, using the split Hopkinson tension/compression bars and Instron universal testing machine. The effect of strain rate on the ultra tensile strength (UTS), the hardening modulus and the failure strain was investigated. At the same time, the SEM observations of dynamic fracture surfaces of various MMC materials showed some distinguished microstructures and patterns. Some new characteristics of asymmetry of mechanical behaviors of MMCs under tension and compression loading were also presented and explained in details, and they could be considered as marks to indicate, to some degree, the mechanism of controlling damage and failure of MMCs under impact loading. The development of new constitutive laws about MMCs under impact loading should benefit from these experimental results and theoretical analysis.