801 resultados para Unit root analysis
Resumo:
Concession contracts in highways often include some kind of clauses (for example, a minimum traffic guarantee) that allow for better management of the business risks. The value of these clauses may be important and should be added to the total value of the concession. However, in these cases, traditional valuation techniques, like the NPV (net present value) of the project, are insufficient. An alternative methodology for the valuation of highway concession is one based on the real options approach. This methodology is generally built on the assumption of the evolution of traffic volume as a GBM (geometric Brownian motion), which is the hypothesis analyzed in this paper. First, a description of the methodology used for the analysis of the existence of unit roots (i.e., the hypothesis of non-stationarity) is provided. The Dickey-Fuller approach has been used, which is the most common test for this kind of analysis. Then this methodology is applied to perform a statistical analysis of traffic series in Spanish toll highways. For this purpose, data on the AADT (annual average daily traffic) on a set of highways have been used. The period of analysis is around thirty years in most cases. The main outcome of the research is that the hypothesis that traffic volume follows a GBM process in Spanish toll highways cannot be rejected. This result is robust, and therefore it can be used as a starting point for the application of the real options theory to assess toll highway concessions.
Resumo:
Empirical evidence suggests that real exchange rate is characterized by the presence of near-unity and additive outliers. Recent studeis have found evidence on favor PPP reversion by using the quasi-differencing (Elliott et al., 1996) unit root tests (ERS), which is more efficient against local alternatives but is still based on least squares estimation. Unit root tests basead on least saquares method usually tend to bias inference towards stationarity when additive out liers are present. In this paper, we incorporate quasi-differencing into M-estimation to construct a unit root test that is robust not only against near-unity root but also against nonGaussian behavior provoked by assitive outliers. We re-visit the PPP hypothesis and found less evidemce in favor PPP reversion when non-Gaussian behavior in real exchange rates is taken into account.
Resumo:
This Paper Studies Tests of Joint Hypotheses in Time Series Regression with a Unit Root in Which Weakly Dependent and Heterogeneously Distributed Innovations Are Allowed. We Consider Two Types of Regression: One with a Constant and Lagged Dependent Variable, and the Other with a Trend Added. the Statistics Studied Are the Regression \"F-Test\" Originally Analysed by Dickey and Fuller (1981) in a Less General Framework. the Limiting Distributions Are Found Using Functinal Central Limit Theory. New Test Statistics Are Proposed Which Require Only Already Tabulated Critical Values But Which Are Valid in a Quite General Framework (Including Finite Order Arma Models Generated by Gaussian Errors). This Study Extends the Results on Single Coefficients Derived in Phillips (1986A) and Phillips and Perron (1986).
Resumo:
This paper examines the finite sample properties of three testing regimes for the null hypothesis of a panel unit root against stationary alternatives in the presence of cross-sectional correlation. The regimes of Bai and Ng (2004), Moon and Perron (2004) and Pesaran (2007) are assessed in the presence of multiple factors and also other non-standard situations. The behaviour of some information criteria used to determine the number of factors in a panel is examined and new information criteria with improved properties in small-N panels proposed. An application to the efficient markets hypothesis is also provided. The null hypothesis of a panel random walk is not rejected by any of the tests, supporting the efficient markets hypothesis in the financial services sector of the Australian Stock Exchange.
Resumo:
The consideration of the limit theory in which T is fixed and N is allowed to go to infinity improves the finite-sample properties of the tests and avoids the imposition of the relative rates at which T and N go to infinity.
Resumo:
This paper proposes the use of an improved covariate unit root test which exploits the cross-sectional dependence information when the panel data null hypothesis of a unit root is rejected. More explicitly, to increase the power of the test, we suggest the utilization of more than one covariate and offer several ways to select the ‘best’ covariates from the set of potential covariates represented by the individuals in the panel. Employing our methods, we investigate the Prebish-Singer hypothesis for nine commodity prices. Our results show that this hypothesis holds for all but the price of petroleum.
Resumo:
We extend the class of M-tests for a unit root analyzed by Perron and Ng (1996) and Ng and Perron (1997) to the case where a change in the trend function is allowed to occur at an unknown time. These tests M(GLS) adopt the GLS detrending approach of Dufour and King (1991) and Elliott, Rothenberg and Stock (1996) (ERS). Following Perron (1989), we consider two models : one allowing for a change in slope and the other for both a change in intercept and slope. We derive the asymptotic distribution of the tests as well as that of the feasible point optimal tests PT(GLS) suggested by ERS. The asymptotic critical values of the tests are tabulated. Also, we compute the non-centrality parameter used for the local GLS detrending that permits the tests to have 50% asymptotic power at that value. We show that the M(GLS) and PT(GLS) tests have an asymptotic power function close to the power envelope. An extensive simulation study analyzes the size and power in finite samples under various methods to select the truncation lag for the autoregressive spectral density estimator. An empirical application is also provided.
Resumo:
This paper studies testing for a unit root for large n and T panels in which the cross-sectional units are correlated. To model this cross-sectional correlation, we assume that the data is generated by an unknown number of unobservable common factors. We propose unit root tests in this environment and derive their (Gaussian) asymptotic distribution under the null hypothesis of a unit root and local alternatives. We show that these tests have significant asymptotic power when the model has no incidental trends. However, when there are incidental trends in the model and it is necessary to remove heterogeneous deterministic components, we show that these tests have no power against the same local alternatives. Through Monte Carlo simulations, we provide evidence on the finite sample properties of these new tests.