871 resultados para Uniqueness of equilibrium
Resumo:
A longstanding unresolved question is whether the one-period Kyle Model of an informed trader and a noisily informed market maker has an equilibrium that is different from the closed-form solution derived by Kyle (1985). This note advances what is known about this open problem.
Resumo:
In applied work in macroeconomics and finance, nonoptimal infinite horizon economies are often studied in the the state space is unbounded. Important examples of such economies are single vector growth models with production externalities, valued fiat money, monopolistic competition, and/or distortionary government taxation. Although sufficient conditions for existence and uniqueness of Markovian equilibrium are well known for the compact state space case, no similar sufficient conditions exist for unbounded growth. This paper provides such a set of sufficient conditions, and also present a computational algorithm that will prove asymptotically consistent when computing Markovian equilibrium.
Resumo:
Cikkünk arról a paradox jelenségről szól, hogy a fogyasztást explicit módon megjelenítő Neumann-modell egyensúlyi megoldásaiban a munkabért meghatározó létszükségleti termékek ára esetenként nulla lehet, és emiatt a reálbér egyensúlyi értéke is nulla lesz. Ez a jelenség mindig bekövetkezik az olyan dekomponálható gazdaságok esetén, amelyekben eltérő növekedési és profitrátájú, alternatív egyensúlyi megoldások léteznek. A jelenség sokkal áttekinthetőbb formában tárgyalható a modell Leontief-eljárásra épülő egyszerűbb változatában is, amit ki is használunk. Megmutatjuk, hogy a legnagyobbnál alacsonyabb szintű növekedési tényezőjű megoldások közgazdasági szempontból értelmetlenek, és így érdektelenek. Ezzel voltaképpen egyrészt azt mutatjuk meg, hogy Neumann kiváló intuíciója jól működött, amikor ragaszkodott modellje egyértelmű megoldásához, másrészt pedig azt is, hogy ehhez nincs szükség a gazdaság dekomponálhatóságának feltételezésére. A vizsgált téma szorosan kapcsolódik az általános profitráta meghatározásának - Sraffa által modern formába öntött - Ricardo-féle elemzéséhez, illetve a neoklasszikus növekedéselmélet nevezetes bér-profit, illetve felhalmozás-fogyasztás átváltási határgörbéihez, ami jelzi a téma elméleti és elmélettörténeti érdekességét is. / === / In the Marx-Neumann version of the Neumann model introduced by Morishima, the use of commodities is split between production and consumption, and wages are determined as the cost of necessary consumption. In such a version it may occur that the equilibrium prices of all goods necessary for consumption are zero, so that the equilibrium wage rate becomes zero too. In fact such a paradoxical case will always arise when the economy is decomposable and the equilibrium not unique in terms of growth and interest rate. It can be shown that a zero equilibrium wage rate will appear in all equilibrium solutions where growth and interest rate are less than maximal. This is another proof of Neumann's genius and intuition, for he arrived at the uniqueness of equilibrium via an assumption that implied that the economy was indecomposable, a condition relaxed later by Kemeny, Morgenstern and Thompson. This situation occurs also in similar models based on Leontief technology and such versions of the Marx-Neumann model make the roots of the problem more apparent. Analysis of them also yields an interesting corollary to Ricardo's corn rate of profit: the real cause of the awkwardness is bad specification of the model: luxury commodities are introduced without there being a final demand for them, and production of them becomes a waste of resources. Bad model specification shows up as a consumption coefficient incompatible with the given technology in the more general model with joint production and technological choice. For the paradoxical situation implies the level of consumption could be raised and/or the intensity of labour diminished without lowering the equilibrium rate of the growth and interest. This entails wasteful use of resources and indicates again that the equilibrium conditions are improperly specified. It is shown that the conditions for equilibrium can and should be redefined for the Marx-Neumann model without assuming an indecomposable economy, in a way that ensures the existence of an equilibrium unique in terms of the growth and interest rate coupled with a positive value for the wage rate, so confirming Neumann's intuition. The proposed solution relates closely to findings of Bromek in a paper correcting Morishima's generalization of wage/profit and consumption/investment frontiers.
Resumo:
In this paper we consider strictly convex monotone continuous complete preorderings on R+n that are locally representable by a concave utility function. By Alexandroff 's (1939) theorem, this function is twice dífferentiable almost everywhere. We show that if the bordered hessian determinant of a concave utility representation vanishes on a null set. Then demand is countably rectifiable, that is, except for a null set of bundles, it is a countable union of c1 manifolds. This property of consumer demand is enough to guarantee that the equilibrium prices of apure exchange economy will be locally unique, for almost every endowment. We give an example of an economy satisfying these conditions but not the Katzner (1968) - Debreu (1970, 1972) smoothness conditions.
Resumo:
A general derivation of the coupling constant relations which result on embedding a non-simple group like SU L (2) @ U(1) in a larger simple group (or graded Lie group) is given. It is shown that such relations depend only on the requirement (i) that the multiplet of vector fields form an irreducible representation of the unifying algebra and (ii) the transformation properties of the fermions under SU L (2). This point is illustrated in two ways, one by constructing two different unification groups containing the same fermions and therefore have same Weinberg angle; the other by putting different SU L (2) structures on the same fermions and consequently have different Weinberg angles. In particular the value sin~0=3/8 is characteristic of the sequential doublet models or models which invoke a large number of additional leptons like E 6, while addition of extra charged fermion singlets can reduce the value of sin ~ 0 to 1/4. We point out that at the present time the models of grand unification are far from unique.
Resumo:
Via a computer search, Altshuler and Steinberg found that there are 1296+1 combinatorial 3-manifolds on nine vertices, of which only one is non-sphere. This exceptional 3-manifold View the MathML source triangulates the twisted S2-bundle over S1. It was first constructed by Walkup. In this paper, we present a computer-free proof of the uniqueness of this non-sphere combinatorial 3-manifold. As opposed to the computer-generated proof, ours does not require wading through all the 9-vertex 3-spheres. As a preliminary result, we also show that any 9-vertex combinatorial 3-manifold is equivalent by proper bistellar moves to a 9-vertex neighbourly 3-manifold.
Resumo:
Many wormlike micellar systems exhibit appreciable shear thinning due to shear-induced alignment. As the micelles get aligned introducing directionality in the system, the viscoelastic properties are no longer expected to be isotropic. An optical-tweezers-based active microrheology technique enables us to probe the out-of-equilibrium rheological properties of a wormlike micellar system simultaneously along two orthogonal directions-parallel to the applied shear, as well as perpendicular to it. While the displacements of a trapped bead in response to active drag force carry signature of conventional shear thinning, its spontaneous position fluctuations along the perpendicular direction manifest an orthogonal shear thickening, an effect hitherto unobserved. Copyright (C) EPLA, 2010
Resumo:
Analytical solutions to problems in finite elasticity are most often derived using the semi-inverse approach along with the spatial form of the equations of motion involving the Cauchy stress tensor. This procedure is somewhat indirect since the spatial equations involve derivatives with respect to spatial coordinates while the unknown functions are in terms of material coordinates, thus necessitating the use of the chain rule. In this classroom note, we derive compact expressions for the components of the divergence, with respect to orthogonal material coordinates, of the first Piola-Kirchhoff stress tensor. The spatial coordinate system is also assumed to be an orthogonal curvilinear one, although, not necessarily of the same type as the material coordinate system. We show by means of some example applications how analytical solutions can be derived more directly using the derived results.
Resumo:
Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem carbon storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-carbon modeling studies, we focus on the near-equilibrium response of the terrestrial carbon cycle. For a doubling of CO2, the radiative effect on the physical climate system causes global mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase global warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem carbon gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (10 %) indicating that climate warming damps the fertilization-induced carbon uptake over land. Our model-based estimate for the maximum potential terrestrial carbon uptake resulting from a doubling of atmospheric CO2 concentration (285-570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial carbon reservoir. We also find that the terrestrial carbon storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-carbon system. Our model simulations indicate that the time scale of terrestrial carbon cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial carbon storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem carbon for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.
Resumo:
We present a numerical study of a continuum plasticity field coupled to a Ginzburg-Landau model for superfluidity. The results suggest that a supersolid fraction may appear as a long-lived transient during the time evolution of the plasticity field at higher temperatures where both dislocation climb and glide are allowed. Supersolidity, however, vanishes with annealing. As the temperature is decreased, dislocation climb is arrested and any residual supersolidity due to incomplete annealing remains frozen. Our results may provide a resolution of many perplexing issues concerning a variety of experiments on bulk solid He-4.
Resumo:
This paper deals with the Schrodinger equation i partial derivative(s)u(z, t; s) - Lu(z, t; s) = 0; where L is the sub-Laplacian on the Heisenberg group. Assume that the initial data f satisfies vertical bar f(z, t)vertical bar less than or similar to q(alpha)(z, t), where q(s) is the heat kernel associated to L. If in addition vertical bar u(z, t; s(0))vertical bar less than or similar to q(beta)(z, t), for some s(0) is an element of R \textbackslash {0}, then we prove that u(z, t; s) = 0 for all s is an element of R whenever alpha beta < s(0)(2). This result holds true in the more general context of H-type groups. We also prove an analogous result for the Grushin operator on Rn+1.
Resumo:
This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.
Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.