929 resultados para Uniformly
Resumo:
Sub-oxide-to-metallic highly-crystalline nanowires with uniformly distributed nanopores in the 3 nm range have been synthesized by a unique combination of the plasma oxidation, re-deposition and electron-beam reduction. Electron beam exposure-controlled oxide → sub-oxide → metal transition is explained using a non-equilibrium model.
Resumo:
This study is concerned with transient natural convection in an isosceles triangular enclosure subject to non-uniformly cooling at the inclined surfaces and uniformly heating at the base. The numerical simulations of the unsteady flows over a range of Rayleigh numbers and aspect ratios are carried out using Finite Volume Method. Since the upper inclined surfaces are linearly cooled and the bottom surface is heated, the flow is potentially unstable. It is revealed from the numerical simulations that the transient flow development in the enclosure can be classified into three distinct stages; an early stage, a transitional stage, and a steady stage. The flow inside the enclosure depends significantly on the governing parameters, Rayleigh number and aspect ratio. The effect of Rayleigh number and aspect ratio on the flow development and heat transfer rate are discussed. The key finding for this study is to analyze the pitchfork bifurcation of the flow about the geometric center line. The heat transfer through the roof and the ceiling as a form of Nusselt number is reported in this study.
Resumo:
Pyramidal asperities of different apical angle were machined on a flat copper surface. Hardness was estimated from the load-displacement graphs obtained by pressing a spherical rigid indenter onto the asperities. The variation of hardness with apical angle and pitch was recorded with a view to contributing to the development of a general framework for relating measured hardness to the surface roughness.
Resumo:
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.
Resumo:
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0
Resumo:
Conditions under which the asymptotic stabilization of uniformly decoupled time-varying multivariate systems is possible are explored. This is accomplished by developing a canonical form for integrator uniformly decoupled system in which the coefficient matrices have a simple structure. The procedures developed rely on certain conditions on the given system and yield explicit expressions for the stabilization compensators.
Resumo:
An explicit representation of an analytical solution to the problem of decay of a plane shock wave of arbitrary strength is proposed. The solution satisfies the basic equations exactly. The approximation lies in the (approximate) satisfaction of two of the Rankine-Hugoniot conditions. The error incurred is shown to be very small even for strong shocks. This solution analyses the interaction of a shock of arbitrary strength with a centred simple wave overtaking it, and describes a complete history of decay with a remarkable accuracy even for strong shocks. For a weak shock, the limiting law of motion obtained from the solution is shown to be in complete agreement with the Friedrichs theory. The propagation law of the non-uniform shock wave is determined, and the equations for shock and particle paths in the (x, t)-plane are obtained. The analytic solution presented here is uniformly valid for the entire flow field behind the decaying shock wave.
Resumo:
In Minkowski space, an accelerated reference frame may be defined as one that is related to an inertial frame by a sequence of instantaneous Lorentz transformations. Such an accelerated observer sees a causal horizon, and the quantum vacuum of the inertial observer appears thermal to the accelerated observer, also known as the Unruh effect. We argue that an accelerating frame may be similarly defined (i.e. as a sequence of instantaneous Lorentz transformations) in noncommutative Moyal spacetime, and discuss the twisted quantum field theory appropriate for such an accelerated observer. Our analysis shows that there are several new features in the case of noncommutative spacetime: chiral massless fields in (1 + 1) dimensions have a qualitatively different behavior compared to massive fields. In addition, the vacuum of the inertial observer is no longer an equilibrium thermal state of the accelerating observer, and the Bose-Einstein distribution acquires.-dependent corrections.
Resumo:
A distributed storage setting is considered where a file of size B is to be stored across n storage nodes. A data collector should be able to reconstruct the entire data by downloading the symbols stored in any k nodes. When a node fails, it is replaced by a new node by downloading data from some of the existing nodes. The amount of download is termed as repair bandwidth. One way to implement such a system is to store one fragment of an (n, k) MDS code in each node, in which case the repair bandwidth is B. Since repair of a failed node consumes network bandwidth, codes reducing repair bandwidth are of great interest. Most of the recent work in this area focuses on reducing the repair bandwidth of a set of k nodes which store the data in uncoded form, while the reduction in the repair bandwidth of the remaining nodes is only marginal. In this paper, we present an explicit code which reduces the repair bandwidth for all the nodes to approximately B/2. To the best of our knowledge, this is the first explicit code which reduces the repair bandwidth of all the nodes for all feasible values of the system parameters.
Resumo:
We consider the two-parameter Sturm–Liouville system $$ -y_1''+q_1y_1=(\lambda r_{11}+\mu r_{12})y_1\quad\text{on }[0,1], $$ with the boundary conditions $$ \frac{y_1'(0)}{y_1(0)}=\cot\alpha_1\quad\text{and}\quad\frac{y_1'(1)}{y_1(1)}=\frac{a_1\lambda+b_1}{c_1\lambda+d_1}, $$ and $$ -y_2''+q_2y_2=(\lambda r_{21}+\mu r_{22})y_2\quad\text{on }[0,1], $$ with the boundary conditions $$ \frac{y_2'(0)}{y_2(0)} =\cot\alpha_2\quad\text{and}\quad\frac{y_2'(1)}{y_2(1)}=\frac{a_2\mu+b_2}{c_2\mu+d_2}, $$ subject to the uniform-left-definite and uniform-ellipticity conditions; where $q_{i}$ and $r_{ij}$ are continuous real valued functions on $[0,1]$, the angle $\alpha_{i}$ is in $[0,\pi)$ and $a_{i}$, $b_{i}$, $c_{i}$, $d_{i}$ are real numbers with $\delta_{i}=a_{i}d_{i}-b_{i}c_{i}>0$ and $c_{i}\neq0$ for $i,j=1,2$. Results are given on asymptotics, oscillation of eigenfunctions and location of eigenvalues.
Resumo:
A distributed storage setting is considered where a file of size B is to be stored across n storage nodes. A data collector should be able to reconstruct the entire data by downloading the symbols stored in any k nodes. When a node fails, it is replaced by a new node by downloading data from some of the existing nodes. The amount of download is termed as repair bandwidth. One way to implement such a system is to store one fragment of an (n, k) MDS code in each node, in which case the repair bandwidth is B. Since repair of a failed node consumes network bandwidth, codes reducing repair bandwidth are of great interest. Most of the recent work in this area focuses on reducing the repair bandwidth of a set of k nodes which store the data in uncoded form, while the reduction in the repair bandwidth of the remaining nodes is only marginal. In this paper, we present an explicit code which reduces the repair bandwidth for all the nodes to approximately B/2. To the best of our knowledge, this is the first explicit code which reduces the repair bandwidth of all the nodes for all feasible values of the system parameters.
Resumo:
In this article, we have reported the controlled synthesis of uniformly grown zinc oxide nanoparticles (ZnO NPs) films by a simple, low-cost, and scalable pulsed spray pyrolysis technique. From the surface analysis it is noticed that the as-deposited films have uniformly dispersed NPs-like morphology. The structural studies reveal that these NPs films have highly crystalline hexagonal crystal structure, which are preferentially orientated along the (001) planes. The size of the NPs varied between 5 and 100 nm, and exhibited good stoichiometric chemical composition. Raman spectroscopic analysis reveals that these ZnO NPs films have pure single phase and hexagonal crystal structure. These unique nanostructured films exhibited a low electrical resistivity (5 Omega cm) and high light transmittance (90 %) in visible region.
Resumo:
Contemporary cellular standards, such as Long Term Evolution (LTE) and LTE-Advanced, employ orthogonal frequency-division multiplexing (OFDM) and use frequency-domain scheduling and rate adaptation. In conjunction with feedback reduction schemes, high downlink spectral efficiencies are achieved while limiting the uplink feedback overhead. One such important scheme that has been adopted by these standards is best-m feedback, in which every user feeds back its m largest subchannel (SC) power gains and their corresponding indices. We analyze the single cell average throughput of an OFDM system with uniformly correlated SC gains that employs best-m feedback and discrete rate adaptation. Our model incorporates three schedulers that cover a wide range of the throughput versus fairness tradeoff and feedback delay. We show that, for small m, correlation significantly reduces average throughput with best-m feedback. This result is pertinent as even in typical dispersive channels, correlation is high. We observe that the schedulers exhibit varied sensitivities to correlation and feedback delay. The analysis also leads to insightful expressions for the average throughput in the asymptotic regime of a large number of users.
Resumo:
Practical orthogonal frequency division multiplexing (OFDM) systems, such as Long Term Evolution (LTE), exploit multi-user diversity using very limited feedback. The best-m feedback scheme is one such limited feedback scheme, in which users report only the gains of their m best subchannels (SCs) and their indices. While the scheme has been extensively studied and adopted in standards such as LTE, an analysis of its throughput for the practically important case in which the SCs are correlated has received less attention. We derive new closed-form expressions for the throughput when the SC gains of a user are uniformly correlated. We analyze the performance of the greedy but unfair frequency-domain scheduler and the fair round-robin scheduler for the general case in which the users see statistically non-identical SCs. An asymptotic analysis is then developed to gain further insights. The analysis and extensive numerical results bring out how correlation reduces throughput.