986 resultados para Underwater passive acoustic monitoring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O Monitoramento Acústico Passivo (PAM) submarino refere-se ao uso de sistemas de escuta e gravação subaquática, com o intuito de detectar, monitorar e identificar fontes sonoras através das ondas de pressão que elas produzem. Se diz que é passivo já que tais sistemas unicamente ouvem, sem perturbam o meio ambiente acústico existente, diferentemente de ativos, como os sonares. O PAM submarino tem diversas áreas de aplicação, como em sistemas de vigilância militar, seguridade portuária, monitoramento ambiental, desenvolvimento de índices de densidade populacional de espécies, identificação de espécies, etc. Tecnologia nacional nesta área é praticamente inexistente apesar da sua importância. Neste contexto, o presente trabalho visa contribuir com o desenvolvimento de tecnologia nacional no tema através da concepção, construção e operação de equipamento autônomo de PAM e de métodos de processamento de sinais para detecção automatizada de eventos acústicos submarinos. Foi desenvolvido um equipamento, nomeado OceanPod, que possui características como baixo custo de fabrica¸c~ao, flexibilidade e facilidade de configuração e uso, voltado para a pesquisa científica, industrial e para controle ambiental. Vários protótipos desse equipamento foram construídos e utilizados em missões no mar. Essas jornadas de monitoramento permitiram iniciar a criação de um banco de dados acústico, o qual permitiu fornecer a matéria prima para o teste de detectores de eventos acústicos automatizados e em tempo real. Adicionalmente também é proposto um novo método de detecção-identificação de eventos acústicos, baseado em análise estatística da representação tempo-frequência dos sinais acústicos. Este novo método foi testado na detecção de cetáceos, presentes no banco de dados gerado pelas missões de monitoramento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research work has been in the area of compounding and characterization of rubbers for use in under water electro acoustic transducers. The study also covers specific material system such as encapsulation materials, baffle material, seal material, etc. Life prediction techniques of under water rubbers in general have been established with reference to more than one functional property. Ranges of passive materials, besides the active sensing material go into the construction of underwater electro acoustic transducers. Reliability of the transducer is critically dependent on these passive materials. Rubbers are a major class of passive materials. The present work concentrates on these materials. Conventional rubbers are inadequate to meet many of the stringent function specific requirements. There exists a large gap of information in the rubber technology of underwater rubbers, particularly relating to underwater electro acoustic transducers. This study is towards filling up the gaps of information in this crucial area. Water intake into rubber is considered as the single most important issue for the long-term performance of rubbers, especially Neoprene. In this study, the cause and effects of a range of parameters affecting the water absorption by diffusion and permeation have been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rubber has become an indispensable material in Ocean technology. Rubber components play critical roles such as sealing, damping, environmental protection, electrical insulation etc. in most under water engineering applications. Technology driven innovations in electro acoustic transducers and other sophisticated end uses have enabled quantum jump in the quality and reliability of rubber components. Under water electro acoustic transducers use rubbers as a critical material in their construction. Work in this field has lead to highly reliable and high performance materials which has enhanced service life of transducers to the extent of 1015 years. Present work concentrates on these materials. Conventional rubbers are inadequate to meet many of the stringent functional of the requirements. There exists large gap of information in the rubber technology of under water rubbers, particularly in the context of under water electro acoustic transducers. Present study is towards filling up the gaps of information in this crucial area. The research work has been in the area of compounding and characterisation of rubbers for use in under water electro acoustic transducers. The study also covers specific material system such as encapsulation material, baffle material, seal material, etc. Life prediction techniques of under water rubbers in general has been established with reference to more than one functional property. This thesis is divided into 6 chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recordings from the PerenniAL Acoustic Observatory in the Antarctic ocean (PALAOA) show seasonal acoustic presence of 4 Antarctic ice-breeding seal species (Ross seal, Ommatophoca rossii, Weddell seal, Leptonychotes weddellii, crabeater, Lobodon carcinophaga, and leopard seal, Hydrurga leptonyx). Apart from Weddell seals, inhabiting the fast-ice in Atka Bay, the other three (pack-ice) species however have to date never (Ross and leopard seal) or only very rarely (crabeater seals) been sighted in the Atka Bay region. The aim of the PASATA project is twofold: the large passive acoustic hydrophone array (hereafter referred to as large array) aims to localize calling pack-ice pinniped species to obtain information on their location and hence the ice habitat they occupy. This large array consists of four autonomous passive acoustic recorders with a hydrophone sensor deployed through a drilled hole in the sea ice. The PASATA recordings are time-stamped and can therefore be coupled to the PALAOA recordings so that the hydrophone array spans the bay almost entirely from east to west. The second, smaller hydrophone array (hereafter referred to as small array), also consists of four autonomous passive acoustic recorders with hydrophone sensors deployed through drilled holes in the sea ice. The smaller array was deployed within a Weddell seal breeding colony, located further south in the bay, just off the ice shelf. Male Weddell seals are thought to defend underwater territories around or near tide cracks and breathing holes used by females. Vocal activity increases strongly during the breeding season and vocalizations are thought to be used underwater by males for the purpose of territorial defense and advertisement. With the smaller hydrophone array we aim to investigate underwater behaviour of vocalizing male and female Weddell seals to provide further information on underwater movement patterns in relation to the location of tide cracks and breathing holes. As a pilot project, one on-ice and three underwater camera systems have been deployed near breathing holes to obtain additional visual information on Weddell seal behavioural activity. Upon each visit in the breeding colony, a census of colony composition on the ice (number of animals, sex, presence of dependent pups, presence and severity of injuries-indicative of competition intensity) as well as GPS readings of breathing holes and positions of hauled out Weddell seals are taken.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the feasibility of using semipermeable membrane devices (SPMDs) and polyethylene-based passive sampler devices (PSDs) for monitoring PAHs in stormwater. Firstly, SPMDs were deployed at one site and SPMD-derived water concentrations were compared with water concentration measured from grab samples. In a subsequent deployment the performance of SPMDs and PSDs was compared. Finally PSDs of multiple surface area to volume ratios were used to compare PAH concentrations at the two sites. The results obtained in this study show that SPMDs can be used to measure the water concentration of PAHs with reasonable accuracy, when compared with grab samples collected at the same site. Importantly, several PAHs which could not be detected in a 10 L grab sample could be detected in the SPMDs. PSD and SPMD samplers produced similar results when deployed at the same site, with most estimated water concentrations within a factor of 1.5. The use of PSDs in multiple surface area to volume ratios proved to be an effective means of characterizing the uptake kinetics for PAHs in situ. Overall passive water samplers proved to be an efficient technique for monitoring PAHs in stormwater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of waters around Lundy by dolphins and porpoises was measured using summer shore-based watches and passive acoustic surveillance between July 2011 and July 2012. Common dolphins (Delphinus delphis) were the only cetacean species observed during shore-based surveys. C-PODs moored on the Ethel and MV Robert wrecks close to the Lundy coast showed a peak in delphinid vocal activity during August 2011. Passive acoustic detections of harbour porpoises (Phocoena phocoena) were highest during ebb tidal phases and most often associated with the tidal rip at the south of the island. These findings show tidal and monthly influences on odontocete behaviour and highlight the value of continuous, passive acoustic monitoring for these highly mobile marine predators around Lundy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bats correspond to 20% of the extant mammal species and, with a few exceptions, use echolocation, a spacial orientation system based on emission and analysis of echoes from sound waves, generally ultrasounds. Echolocation was discovered in the 1940 s and since the 1970 s ultrasound detectors have been commercially available, allowing the investigation of several aspects of the natural history and ecology of bats. Passive acoustic monitoring has been frequently used in habitat use studies, predominantly in North America and Europe, by comparing the number of bat passes between different habitat types. This dissertation presents the first evaluation of the spacial and seasonal variation patterns in the activity of insectivorous bats in the Brazilian biome Pampa, in the state of Rio Grande do Sul. Since bat activity can vary according to habitat type, time of year and climatic conditions, the following hypotheses were tested: 1. bat activity varies between different types of habitat; 2. bat activity varies seasonally; 3. bat activity is influenced by temperature, humidity and wind speed. The acoustic samples were taken along fixed transects of 1500 meters, which were monitored monthly from April 2009 to March 2010. Five habitat types were sampled: eucalypts, stream, riparian forest, wetland and grassland. In each sample, the number of bat passes was obtained by using an ultrasound detector Pettersson D230. A total of 1183 bat passes were registered. Greater bat activity levels was observed along large eucalypts (1.93 bat passes/3min) and along a stream (1.61 bat passes/3 min). A riparian forest (0.94 bat passes/3 min) and a wetland area (0.61 bat passes/3 min) exhibited statistically equal levels of activity. Bat passes were fewer in grassland areas (0,16 bat passes/3 min). Bat activity was not correlated with abiotic factors. However, bat activity was significantly low in the colder season, winter, and was similar in autumn, spring and summer. The observed preference for vegetation borders and water courses agrees with reports from other countries and is attributed predominantly to the high prey abundance in these types of environments. Additionally, low activity in the winter is probably a response to the reduced availability of insects, and to lower temperatures. Our results indicate which areas of arboreal vegetation and water courses should be priorities for the conservation of bats and that alterations of these habitat types might negatively influence bat activity in the region

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-04

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maned wolf (Chrysocyon brachyurus Illiger 1815) is the biggest canid in South America and it is considered a “near threatened” species by IUCN. Because of its nocturnal, territorial and solitary habits, there are still many understudied aspects of their behavior in natural environments, including acoustic communication. In its vocal repertoire, the wolf presents a longdistance call named “roar-bark” which, according to literature, functions for spacing maintenance between individuals and/or communication between members of the reproductive pair inside the territory. In this context, this study aimed: 1) to compare four methods for detecting maned wolf’s roar-barks in recordings made in a natural environment, in order to elect the most efficient one for our project; 2) to understand the night emission pattern of these vocalizations, verifying possible weather and moon phases influences in roarbark’s emission rates; and 3) to test Passive Acoustic Monitoring as a tool to identify the presence of maned wolves in a natural environment. The study area was the Serra da Canastra National Park (Minas Gerais, Brazil), where autonomous recorders were used for sound acquisition, recording all night (from 06pm to 06am) during five days in December/2013 and every day from April to July/2014. Roar-barks’ detection methods were tested and compared regarding time needed to analyze files, number of false positives and number of correctly identified calls. The mixed method (XBAT + manual) was the most efficient one, finding 100% of vocalizations in almost half of the time the manual method did, being chosen for our data analysis. By studying roarbarks’ temporal variation we verified that the wolves vocalize more in the early hours of the evening, suggesting an important social function for those calls at the beginning of its period of most intense activity. Average wind speed negatively influenced vocalization rate, which may indicate lower sound reception of recorders or a change in behavioral patterns of wolves in high speed wind conditions. A better understanding of seasonal variation of maned wolves’ vocal activity is required, but our study already shows that it is possible to detect behavioral patterns of wild animals only by sound, validating PAM as a tool in this species’ conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sound is a key sensory modality for Hawaiian spinner dolphins. Like many other marine animals, these dolphins rely on sound and their acoustic environment for many aspects of their daily lives, making it is essential to understand soundscape in areas that are critical to their survival. Hawaiian spinner dolphins rest during the day in shallow coastal areas and forage offshore at night. In my dissertation I focus on the soundscape of the bays where Hawaiian spinner dolphins rest taking a soundscape ecology approach. I primarily relied on passive acoustic monitoring using four DSG-Ocean acoustic loggers in four Hawaiian spinner dolphin resting bays on the Kona Coast of Hawai‛i Island. 30-second recordings were made every four minutes in each of the bays for 20 to 27 months between January 8, 2011 and March 30, 2013. I also utilized concomitant vessel-based visual surveys in the four bays to provide context for these recordings. In my first chapter I used the contributions of the dolphins to the soundscape to monitor presence in the bays and found the degree of presence varied greatly from less than 40% to nearly 90% of days monitored with dolphins present. Having established these bays as important to the animals, in my second chapter I explored the many components of their resting bay soundscape and evaluated the influence of natural and human events on the soundscape. I characterized the overall soundscape in each of the four bays, used the tsunami event of March 2011 to approximate a natural soundscape and identified all loud daytime outliers. Overall, sound levels were consistently louder at night and quieter during the daytime due to the sounds from snapping shrimp. In fact, peak Hawaiian spinner dolphin resting time co-occurs with the quietest part of the day. However, I also found that humans drastically alter this daytime soundscape with sound from offshore aquaculture, vessel sound and military mid-frequency active sonar. During one recorded mid-frequency active sonar event in August 2011, sound pressure levels in the 3.15 kHz 1/3rd-octave band were as high as 45.8 dB above median ambient noise levels. Human activity both inside (vessels) and outside (sonar and aquaculture) the bays significantly altered the resting bay soundscape. Inside the bays there are high levels of human activity including vessel-based tourism directly targeting the dolphins. The interactions between humans and dolphins in their resting bays are of concern; therefore, my third chapter aimed to assess the acoustic response of the dolphins to human activity. Using days where acoustic recordings overlapped with visual surveys I found the greatest response in a bay with dolphin-centric activities, not in the bay with the most vessel activity, indicating that it is not the magnitude that elicits a response but the focus of the activity. In my fourth chapter I summarize the key results from my first three chapters to illustrate the power of multiple site design to prioritize action to protect Hawaiian spinner dolphins in their resting bays, a chapter I hope will be useful for managers should they take further action to protect the dolphins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scientific background: Marine mammals use sound for communication, navigation and prey detection. Acoustic sensors therefore allow the detection of marine mammals, even during polar winter months, when restricted visibility prohibits visual sightings. The animals are surrounded by a permanent natural soundscape, which, in polar waters, is mainly dominated by the movement of ice. In addition to the detection of marine mammals, acoustic long-term recordings provide information on intensity and temporal variability of characteristic natural and anthropogenic background sounds, as well as their influence on the vocalization of marine mammals Scientific objectives: The PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Hawaiian "whale") near Neumayer Station is intended to record the underwater soundscape in the vicinity of the shelf ice edge over the duration of several years. These long-term recordings will allow studying the acoustic repertoire of whales and seals continuously in an environment almost undisturbed by humans. The data will be analyzed to (1) register species specific vocalizations, (2) infer the approximate number of animals inside the measuring range, (3) calculate their movements relative to the observatory, and (4) examine possible effects of the sporadic shipping traffic on the acoustic and locomotive behaviour of marine mammals. The data, which are largely free of anthropogenic noise, provide also a base to set up passive acoustic mitigation systems used on research vessels. Noise-free bioacoustic data thereby represent the foundation for the development of automatic pattern recognition procedures in the presence of interfering sounds, e.g. propeller noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine mammals exploit the efficiency of sound propagation in the marine environment for essential activities like communication and navigation. For this reason, passive acoustics has particularly high potential for marine mammal studies, especially those aimed at population management and conservation. Despite the rapid realization of this potential through a growing number of studies, much crucial information remains unknown or poorly understood. This research attempts to address two key knowledge gaps, using the well-studied bottlenose dolphin (Tursiops truncatus) as a model species, and underwater acoustic recordings collected on four fixed autonomous sensors deployed at multiple locations in Sarasota Bay, Florida, between September 2012 and August 2013. Underwater noise can hinder dolphin communication. The ability of these animals to overcome this obstacle was examined using recorded noise and dolphin whistles. I found that bottlenose dolphins are able to compensate for increased noise in their environment using a wide range of strategies employed in a singular fashion or in various combinations, depending on the frequency content of the noise, noise source, and time of day. These strategies include modifying whistle frequency characteristics, increasing whistle duration, and increasing whistle redundancy. Recordings were also used to evaluate the performance of six recently developed passive acoustic abundance estimation methods, by comparing their results to the true abundance of animals, obtained via a census conducted within the same area and time period. The methods employed were broadly divided into two categories – those involving direct counts of animals, and those involving counts of cues (signature whistles). The animal-based methods were traditional capture-recapture, spatially explicit capture-recapture (SECR), and an approach that blends the “snapshot” method and mark-recapture distance sampling, referred to here as (SMRDS). The cue-based methods were conventional distance sampling (CDS), an acoustic modeling approach involving the use of the passive sonar equation, and SECR. In the latter approach, detection probability was modelled as a function of sound transmission loss, rather than the Euclidean distance typically used. Of these methods, while SMRDS produced the most accurate estimate, SECR demonstrated the greatest potential for broad applicability to other species and locations, with minimal to no auxiliary data, such as distance from sound source to detector(s), which is often difficult to obtain. This was especially true when this method was compared to traditional capture-recapture results, which greatly underestimated abundance, despite attempts to account for major unmodelled heterogeneity. Furthermore, the incorporation of non-Euclidean distance significantly improved model accuracy. The acoustic modelling approach performed similarly to CDS, but both methods also strongly underestimated abundance. In particular, CDS proved to be inefficient. This approach requires at least 3 sensors for localization at a single point. It was also difficult to obtain accurate distances, and the sample size was greatly reduced by the failure to detect some whistles on all three recorders. As a result, this approach is not recommended for marine mammal abundance estimation when few recorders are available, or in high sound attenuation environments with relatively low sample sizes. It is hoped that these results lead to more informed management decisions, and therefore, more effective species conservation.