958 resultados para Underground excavations


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conventional rockmass characterization and analysis methods for geotechnical assessment in mining, civil tunnelling, and other excavations consider only the intact rock properties and the discrete fractures that are present and form blocks within rockmasses. Field logging and classification protocols are based on historically useful but highly simplified design techniques, including direct empirical design and empirical strength assessment for simplified ground reaction and support analysis. As modern underground excavations go deeper and enter into more high stress environments with complex excavation geometries and associated stress paths, healed structures within initially intact rock blocks such as sedimentary nodule boundaries and hydrothermal veins, veinlets and stockwork (termed intrablock structure) are having an increasing influence on rockmass behaviour and should be included in modern geotechnical design. Due to the reliance on geotechnical classification methods which predate computer aided analysis, these complexities are ignored in conventional design. Given the comparatively complex, sophisticated and powerful numerical simulation and analysis techniques now practically available to the geotechnical engineer, this research is driven by the need for enhanced characterization of intrablock structure for application to numerical methods. Intrablock structure governs stress-driven behaviour at depth, gravity driven disintegration for large shallow spans, and controls ultimate fragmentation. This research addresses the characterization of intrablock structure and the understanding of its behaviour at laboratory testing and excavation scales, and presents new methodologies and tools to incorporate intrablock structure into geotechnical design practice. A new field characterization tool, the Composite Geological Strength Index, is used for outcrop or excavation face evaluation and provides direct input to continuum numerical models with implicit rockmass structure. A brittle overbreak estimation tool for complex rockmasses is developed using field observations. New methods to evaluate geometrical and mechanical properties of intrablock structure are developed. Finally, laboratory direct shear testing protocols for interblock structure are critically evaluated and extended to intrablock structure for the purpose of determining input parameters for numerical models with explicit structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The demand for tunnelling and underground space creation is rapidly growing due to the requirement of civil infrastructure projects and urbanisation. Blasting remains the most inexpensive method of underground excavations in hard rock. Unfortunately, there are no specific safety guidelines available for the blasted tunnels with regards to the threshold limits of vibrations caused by repeated blasting activity in the close proximity. This paper presents the results of a comprehensive study conducted to find out the effect of repeated blast loading on the damage experienced by jointed basaltic rock mass during tunnelling works. Conducting of multiple rounds of blasts for various civil excavations in a railway tunnel imparted repeated loading on rock mass of sidewall and roof of the tunnel. The blast induced damage was assessed by using vibration attenuation equations of charge weight scaling law and measured by borehole extensometers and borehole camera. Ground vibrations of each blasting round were also monitored by triaxial geophones installed near the borehole extensometers. The peak particle velocity (V-max) observations and plastic deformations from borehole extensometers were used to develop a site specific damage model. The study reveals that repeated dynamic loading imparted on the exposed tunnel from subsequent blasts, in the vicinity, resulted in rock mass damage at lesser vibration levels than the critical peak particle velocity (V-cr). It was found that, the repeated blast loading resulted in the near-field damage due to high frequency waves and far-field damage due to low frequency waves. The far field damage, after 45-50 occurrences of blast loading, was up to 55% of the near-field damage in basaltic rock mass. The findings of the study clearly indicate that the phenomena of repeated blasting with respect to number of cycles of loading should be taken into consideration for proper assessment of blast induced damage in underground excavations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis focuses on the modelling of settlement induced damage to masonry buildings. In densely populated areas, the need for new space is nowadays producing a rapid increment of underground excavations. Due to the construction of new metro lines, tunnelling activity in urban areas is growing. One of the consequences is a greater attention to the risk of damage on existing structures. Thus, the assessment of potential damage of surface buildings has become an essential stage in the excavation projects in urban areas (Chapter 1). The current damage risk assessment procedure is based on strong simplifications, which not always lead to conservative results. Object of this thesis is the development of an improved damage classification system, which takes into account the parameters influencing the structural response to settlement, like the non-linear behaviour of masonry and the soil-structure interaction. The methodology used in this research is based on experimental and numerical modelling. The design and execution of an experimental benchmark test representative of the problem allows to identify the principal factors and mechanisms involved. The numerical simulations enable to generalize the results to a broader range of physical scenarios. The methodological choice is based on a critical review of the currently available procedures for the assessment of settlement-induced building damage (Chapter 2). A new experimental test on a 1/10th masonry façade with a rubber base interface is specifically designed to investigate the effect of soil-structure interaction on the tunnelling-induced damage (Chapter 3). The experimental results are used to validate a 2D semi-coupled finite element model for the simulation of the structural response (Chapter 4). The numerical approach, which includes a continuum cracking model for the masonry and a non-linear interface to simulate the soil-structure interaction, is then used to perform a sensitivity study on the effect of openings, material properties, initial damage, initial conditions, normal and shear behaviour of the base interface and applied settlement profile (Chapter 5). The results assess quantitatively the major role played by the normal stiffness of the soil-structure interaction and by the material parameters defining the quasi-brittle masonry behaviour. The limitation of the 2D modelling approach in simulating the progressive 3D displacement field induced by the excavation and the consequent torsional response of the building are overcome by the development of a 3D coupled model of building, foundation, soil and tunnel (Chapter 6). Following the same method applied to the 2D semi-coupled approach, the 3D model is validated through comparison with the monitoring data of a literature case study. The model is then used to carry out a series of parametric analyses on geometrical factors: the aspect ratio of horizontal building dimensions with respect to the tunnel axis direction, the presence of adjacent structures and the position and alignment of the building with respect to the excavation (Chapter 7). The results show the governing effect of the 3D building response, proving the relevance of 3D modelling. Finally, the results from the 2D and 3D parametric analyses are used to set the framework of an overall damage model which correlates the analysed structural features with the risk for the building of being damaged by a certain settlement (Chapter 8). This research therefore provides an increased experimental and numerical understanding of the building response to excavation-induced settlements, and sets the basis for an operational tool for the risk assessment of structural damage (Chapter 9).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mestrado em Engenharia Geotécnica e Geoambiente

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho pretende abordar a importância de um estudo geomecânico no apoio à otimização e estabilidade de explorações subterrâneas por subníveis, com criação de bancadas e posterior enchimento. O presente envolveu um estudo geológico-geotécnico em quinze galerias situadas a muro, teto e corpo da mineralização com o levantamento das características mais relevantes do maciço rochoso para aplicação das classificações geomecânicas, englobando uma amostragem de mais de 1780 descontinuidades, obtendo um modelo cartográfico subterrâneo com um panorama geral da qualidade do maciço rochoso intercetado pelas escavações nas diferentes zonas. Os dados dos levantamentos de campo levaram à criação de uma base de dados com a aplicação das classificações geomecânicas Q-System, RMR e GSI, por galeria e, em seguida, por zona, com proposta de classe de sustimento a aplicar em cada local, pelo ábaco de Barton, em conjunto com a determinação de parâmetros geomecânicos fundamentais ao refinamento do conhecimento geológico-geotécnico das unidades litológicas em estudo. Na parte final, focando a localização da massa mineralizada de Feitais é efetuada uma abordagem relativa à estabilidade das cavidades geradas pelo desmonte em bancada entre subníveis, com respetivo dimensionamento das larguras admissíveis, em condições de segurança, através da relação entre o número de estabilidade e raio hidráulico, pelo método do gráfico de estabilidade. Com esta metodologia de caracterização geológico geotécnica, é pretendido efetuar um ponto de partida à criação de um modelo geomecânico comportamental do jazigo de Feitais, Mina de Aljustrel, contando com um processo inicial de apoio ao planeamento mineiro aplicado ao método de desmonte em bancada e posterior enchimento por subníveis, atuando nos parâmetros de estabilidade e apoio à extração, favorecendo assim a segurança das operações de trabalho em conjunto com um apoio de otimização da extração.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este estudo pretende discutir a validade da aplicação da mais recente versão do “GSI – Geological Strength Index” (Hoek et al., 2013) em maciços rochosos heterogéneos por aplicação num projecto de obra subterrânea em execução. O estudo envolveu a caracterização geológicageotécnica nas duas frentes de escavação da frente “Poente” da empreitada de construção do Túnel do Marão (N de Portugal) tendo sido cartografados 305 metros no conjunto das duas frentes em 74 avanços consecutivos. Para esta caracterização foram coligidos e uniformizados dados geológicos, geotécnicos e geomecânicos relativos aos levantamentos realizados a cada avanço. A técnica da amostragem linear foi aplicada para a cartografia das descontinuidades que permitiu estabelecer o grau de compartimentação do maciço rochoso. Além disso, procedeu‐se a um tratamento estatístico das descontinuidades, bem como dos parâmetros geológico‐geotécnicos e geomecânicos associados. Os zonamentos geotécnicos e geomecânicos das secções em análise foram realizados sempre em estreita ligação com o conhecimento das características do maciço in situ. Procurou‐se estabelecer termos de comparação entre a versão do GSI|2013 e as versões anteriores (GSI|98, GSI|2001) por aplicação para os avanços cartografados. Pretende‐se que este trabalho contribua para um maior conhecimento da mais recente versão do “Geological Strength Index” (2013) para a sua aplicabilidade em projectos de geoengenharia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La habitación rupestre en la Península Ibérica conforma un amplio conjunto de manifestaciones cuyos orígenes son difíciles de dilucidar. Existen conjuntos primitivos, posiblemente horadados durante la Antigüedad Clásica y Tardía, y otros que probablemente se originaron y excavaron en la Alta Edad Media, en los que se mezclan grupos de origen religioso y otros de probable uso defensivo. El conjunto peninsular es sin duda el más variado de Europa Occidental, pues recibió influencias árabes y usos de la cristiandad antigua, importados de Oriente Próximo, que por tanto relacionan estas manifestaciones con otras del arco mediterráneo. La supervivencia del uso de las cuevas a lo largo de la Baja Edad Media -una vez afianzada la Reconquista- es una incógnita, pero los usos rupestres volvieron a generalizarse en ciertos sectores de la Península durante la Edad Moderna, toda vez que el hábitat cuevero manifestó una eclosión relacionada con la peripecia de los moriscos, primero desterrados de sus habitaciones en el Sur y Este peninsular y luego expulsados en los albores del siglo XVII. Los que quedaron, nominalmente conversos, debieron habitar de nuevo cuevas en sus lugares de origen. Esos núcleos son los más abundantes, particularmente en la provincia de Granada y aledañas. Este substrato fue seguramente el punto de apoyo para la proliferación de las cuevas de habitación a partir del siglo XIX, en el cual un creciente proletariado agrícola y urbano necesitó de alojamientos baratos y no hizo sino imitar usos preexistentes, que se pueden rastrear en muchos de los núcleos rupestres que sobrevivieron mayoritariamente hasta bien entrado el siglo XX, y que se abandonaron gradualmente a partir de los años 60 de esa centuria. Para entonces, existían barrios de cuevas extensos en muchas provincias, destacando, aparte de las andaluzas, ciertas zonas de la Cuenca del Ebro (aragonesa, navarra y riojana), del arco periurbano de Valencia, del Sur de Madrid, de la Mancha toledana, o de las provincias de Albacete, Guadalajara, Murcia e incluso de Palencia. Los núcleos antiguos se excavaron -en razón de su origen dedicado a defensa y refugio- en lugares poco accesibles, que mayoritariamente se dan en relieves anfractuosos, en las orlas marginales detríticas y carbonatadas de las cuencas terciarias y en terrenos más antiguos de la geológicamente denominada Cuenca Vasco Cantábrica, en las cuales florecieron centros de eremitismo del primitivo condado de Castilla. También son lugares inaccesibles los riscos asomados a cantiles fluviales, cuya regularización morfológica natural ha sido causa de la ruina de múltiples hipogeos que se labraron con las mismas intenciones de refugio, defensa o retiro espiritual. Los núcleos modernos se han excavado ya en terrenos más propicios (los que componen las cuencas terciarias o "España arcillosa", mayoritariamente), y por ello observamos cómo abundan las litologías sedimentarias, que son aquellas en las que se horadaron casi todas las "colmenas" de habitación moderna en la Península. En unos casos y otros, existen rasgos comunes en lo relativo a la litología y comportamiento de los materiales excavados, y también en lo relativo a su evolución, meteorización y conservación. Se han estudiado por ello estas pautas comunes -como un posible avance para el establecimiento futuro de estudios de geoconservación del patrimonio rupestre habitado-, que se traducen en la determinación de los procesos de meteorización más característicos en los antros de la Península Ibérica -sean modernos o antiguos- y en la determinación de las relaciones más habituales entre geomorfología y tipología de las cuevas de habitación. También se exponen algunas conclusiones relativas a la resistencia de los tipos pétreos en relación a la antigüedad de los emplazamientos. Esta relación se explica bien si tenemos en cuenta que las cuevas antiguas trataban de ser lugares apartados en los que dominan rocas más resistentes -como se ha explicado- y que en las modernas se ha buscado la habitación permanente, en los materiales más blandos ocupan las depresiones terciarias del Centro, Este y Sur de la Península, colonizados no ya como refugios sino de modo seguro, y ya en arrabales "extramuros" de las ciudades. Geomorfológicamente, esta razón histórica tiene consecuencias sobre la posición de las cuevas, sobre su organización, y sobre su conservación. La extensión del dominio estudiado obliga prácticamente a bosquejar algunas de estas conclusiones geológicas, pero permite a su vez proporcionar una visión global acerca del patrimonio troglodítico desde una perspectiva geológica, y en ello radica la principal novedad de la investigación. Cave dwelling in the Iberian Peninsula comprises a great deal of examples whose origins are sometimes difficult to elucidate. There are primitive groups of caves, probably belonging to Classical and Late Antiquity, and other settlements that appear to have been created and excavated in the Early Middle Ages. Some of them are due to religious reasons and some others may probably have served for defensive uses. The Peninsular group is very likely the most diverse in Western Europe, for it was not only influenced by Arabs, but it also assimilated uses from the Antique Christendom, imported from the Middle East. In this sense, Iberian cave dwellings connect with those of the Mediterranean area. There is not total certainty about the survival of caves serving for dwelling throughout the Late Middle Ages, once the Reconquista was a fact. However, underground excavations for human habitation were once again dispread in certain zones of the Peninsula during the Early Modern period. This growth of underground habitats appears in connexion with Morisco’s vicissitudes; first of all, their removal from their settlements in South and Eastern Peninsula, and finally their expulsion from Spanish territory at the very beginning of XVII th century. Those of them who rested in Spain –and that were nominally “converts”- seem to have returned to cave dwelling in their places of origin, particularly in the province of Granada and its neighbouring zones. This substrate may have been the toehold for a new spreading of cave dwellings since XIX th century, when the increasing rural and urban proletariat returned to the pre-existent uses of caves in order to solve the necessity of affordable housing. This fact can still be detected in many of the rock settlements that have survived during a great part of the XX th century and which were gradually abandoned from the 60´s onwards. There were important cave dwelling districts in many Spanish territories by that time, and not only in Andalusia. We also find them in certain areas of the Ebro basin (those of Aragon, Navarra and La Rioja), in the peri-urban arc of Valencia, in the South of Madrid province and also in the provinces of Toledo (the so called “Mancha toledana”), Albacete, Guadalajara, Murcia or even Palencia as well. Due to their defensive and refuge uses, primitive underground habitats were dug in hardly accessible places. The majority of them are located in mountainous and rough areas, when not in the marginal borders of Tertiary basins, where coarse detritic and carbonate formations outcrop. Cave dwellings can also be found in more ancient rock masses, such as those of the Basque Cantabrian Mesozoic Basin, which is the area where hermit centres of the primitive County of Castile first flourished. Cliffs surrounding fluvial valleys are as well inaccessible places, but here we find that geological evolution has caused the destruction of many rock sanctuaries and cliff dwellings that were originally dug with the same purposes of defence, refuge and spiritual retreat. Later modern cave settlements were dug in quite more favourable terrains, mainly in the soils that compose the Tertiary basins, generally known as “España arcillosa” or “Clayey Spain”. Therefore, we find abundant sedimentary fine and medium grained lithologies, which are the ones that have hosted the majority of Modern Era warren cave dwellings in the Iberian Peninsula. Actually, both types of cave dwelling share some standards regarding the lithology of the excavated materials, and they share as well certain patterns that affect to their evolution, weathering and preservation. These common patterns have been studied here in order to determine the most characteristic weathering processes that affect the majority of the Iberian caves, both Antique and Modern. And also with a view to establish the most habitual relationships between geomorphology and typology of cave dwellings. The study may as well provide a first basis for future studies on geo-preservation of cave dwellings heritage. We also reach some conclusions about the strength of different rocks concerning the antiquity of the sites. As we have already pointed out, this relation comes from the fact that ancient caves were placed in remote or isolated locations, where harder rocks outcrop, while more modern ones result from people´s search of permanent dwelling. In this sense, the softer rocks of the Tertiary Basins of Middle, East and South Peninsula provided a secure colonization to this second and modern group. And moreover, considering geomorphological features, this historical reason has had an effect not only on the position and location of the caves, but also on their organisation/structure/distribution and preservation. The huge extension of our domain of interest almost forces to sketch out some of these geological conclusions. But at the same time it gives a global panorama of Spanish troglodyte heritage, seen from a geological perspective. And here is the main novelty of this research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stress relaxation is relevant to the design of both civil and mining excavations. While many authors refer to the adverse effect of stress relaxation on excavation stability, some present compelling empirical evidence indicating that stress relaxation does not have a significant effect. Establishing clear definitions of stress relaxation was critical to understanding and quantifying stress relaxation of the various types that have been referred to in the literature. This paper defines three types of stress relaxation – partial relaxation, full relaxation and tangential relaxation. Once clear definitions were determined, it became clear that the theoretical arguments and empirical evidence presented by various authors to support their respective cases are not contradictory; rather, the different conclusions can be attributed to different types of stress relaxation. In particular, when the minor principal stress is negative the intermediate principal stress has been identified as significantly affecting jointed rock mass behaviour. The aim of the study was to review and evaluate existing methods of quantifying the effect of stress relaxation around underground excavations and, if necessary, propose a new set of recommendations. An empirical stope stability model, that has been termed the Extended Mathews stability chart, was considered to be the most appropriate method of quantifying the effects of stress relaxation. A new set of guidelines to account for the effect of stress relaxation on excavation stability in the Extended Mathews stability chart has been proposed from a back-analysis of 55 case histories of stress relaxation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two case histories on deep excavation of marine clay are used to study the use of a decision-making tool based on a new deign method called the Mobilized Strength Design (MSD) method which allows the designer to use a simple method of predicting ground displacements during deep excavation. This application can approximately satisfy both safety and serviceability requirements by predicting stresses and displacements under working conditions by introducing the concept of "Mobilizable soil strength". The new method accommodates a number of features which are important to design of underground construction between retaining walls, including different deformation mechanism in different stages of excavation. The influence of wall depth, wall flexibility and stratified ground are the major focus of this paper. These developments should make it possible for a design engineer to take informed decisions on the influence of wall stiffness, or on the need for a jet-grouted base slab, for example, without having to conduct project-specific Finite Element Analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite Element Analysis (FEA) is used to calibrate a decision-making tool based on an extension of the Mobilized Strength Design (MSD) method which permits the designer an extremely simple method of predicting ground displacements during construction. This newly extended MSD approach accommodates a number of issues which are important in underground construction between in-situ walls, including: alternative base heave mechanisms suitable either for wide excavations in relatively shallow soft clay strata, or narrow excavations in relatively deep soft strata; the influence of support system stiffness in relation to the sequence of propping of the wall; and the capability of dealing with stratified ground. These developments should make it possible for a design engineer to take informed decisions on the relationship between prop spacing and ground movements, or the influence of wall stiffness, or on the need for and influence of a jet-grouted base slab, for example, without having to conduct project-specific FEA. © 2009 Taylor & Francis Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil-structure interaction mechanisms. The significance of these observations is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the biggest issues for underground construction in a densely built-up urban environment is the potentially adverse impact on buildings adjacent to deep excavations. In Singapore, a building damage assessment is usually carried out using a three-staged approach to assess the risk of damage caused by major underground construction projects. However, the tensile strains used for assessing the risk of building damage are often derived using deflection ratios and horizontal strains under 'greenfield' conditions. This ignores the effects of building stiffness and in many cases may be conservative. This paper presents some findings from a study on the response of buildings to deep excavations. Firstly, the paper discusses the settlement response of an actual building - the Singapore Art Museum - adjacent to a deep excavation. By comparing the monitored building settlement with the adjacent ground settlement markers, the influence of building stiffness in modifying the response to excavation-induced settlements is observed. Using the finite element method, a numerical study on the building response to movements induced by deep excavations found a consistent relationship between the building modification factor and a newly defined relative bending stiffness of the building. This relationship can be used as a design guidance to estimate the deflection ratio in a building from the greenfield condition. By comparing the case study results with the design guidance developed from finite element analysis, this paper presents some important characteristics of the influence of building stiffness on building damages for deep excavations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)