867 resultados para Uncertainty in measurement
Resumo:
The uncertainty of measurements must be quantified and considered in order to prove conformance with specifications and make other meaningful comparisons based on measurements. While there is a consistent methodology for the evaluation and expression of uncertainty within the metrology community industry frequently uses the alternative Measurement Systems Analysis methodology. This paper sets out to clarify the differences between uncertainty evaluation and MSA and presents a novel hybrid methodology for industrial measurement which enables a correct evaluation of measurement uncertainty while utilising the practical tools of MSA. In particular the use of Gage R&R ANOVA and Attribute Gage studies within a wider uncertainty evaluation framework is described. This enables in-line measurement data to be used to establish repeatability and reproducibility, without time consuming repeatability studies being carried out, while maintaining a complete consideration of all sources of uncertainty and therefore enabling conformance to be proven with a stated level of confidence. Such a rigorous approach to product verification will become increasingly important in the era of the Light Controlled Factory with metrology acting as the driving force to achieve the right first time and highly automated manufacture of high value large scale products such as aircraft, spacecraft and renewable power generation structures.
Resumo:
This paper details a method of estimating the uncertainty of dimensional measurement for a three-dimensional coordinate measurement machine. An experimental procedure was developed to compare three-dimensional coordinate measurements with calibrated reference points. The reference standard used to calibrate these reference points was a fringe counting interferometer with a multilateration-like technique employed to establish three-dimensional coordinates. This is an extension of the established technique of comparing measured lengths with calibrated lengths. Specifically a distributed coordinate measurement device was tested which consisted of a network of Rotary-Laser Automatic Theodolites (R-LATs), this system is known commercially as indoor GPS (iGPS). The method was found to be practical and was used to estimate that the uncertainty of measurement for the basic iGPS system is approximately 1 mm at a 95% confidence level throughout a measurement volume of approximately 10 m × 10 m × 1.5 m. © 2010 IOP Publishing Ltd.
Resumo:
Laser trackers have been widely used in many industries to meet increasingly high accuracy requirements. In laser tracker measurement, it is complex and difficult to perform an accurate error analysis and uncertainty evaluation. This paper firstly reviews the working principle of single beam laser trackers and state-of- The- Art of key technologies from both industrial and academic efforts, followed by a comprehensive analysis of uncertainty sources. A generic laser tracker modelling method is formulated and the framework of the virtual tracker is proposed. The VLS can be used for measurement planning, measurement accuracy optimization and uncertainty evaluation. The completed virtual laser tracking system should take all the uncertainty sources affecting coordinate measurement into consideration and establish an uncertainty model which will behave in an identical way to the real system. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
In this thesis, the issue of incorporating uncertainty for environmental modelling informed by imagery is explored by considering uncertainty in deterministic modelling, measurement uncertainty and uncertainty in image composition. Incorporating uncertainty in deterministic modelling is extended for use with imagery using the Bayesian melding approach. In the application presented, slope steepness is shown to be the main contributor to total uncertainty in the Revised Universal Soil Loss Equation. A spatial sampling procedure is also proposed to assist in implementing Bayesian melding given the increased data size with models informed by imagery. Measurement error models are another approach to incorporating uncertainty when data is informed by imagery. These models for measurement uncertainty, considered in a Bayesian conditional independence framework, are applied to ecological data generated from imagery. The models are shown to be appropriate and useful in certain situations. Measurement uncertainty is also considered in the context of change detection when two images are not co-registered. An approach for detecting change in two successive images is proposed that is not affected by registration. The procedure uses the Kolmogorov-Smirnov test on homogeneous segments of an image to detect change, with the homogeneous segments determined using a Bayesian mixture model of pixel values. Using the mixture model to segment an image also allows for uncertainty in the composition of an image. This thesis concludes by comparing several different Bayesian image segmentation approaches that allow for uncertainty regarding the allocation of pixels to different ground components. Each segmentation approach is applied to a data set of chlorophyll values and shown to have different benefits and drawbacks depending on the aims of the analysis.
Resumo:
Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.
Resumo:
Report on evidence of shrinkage of live coral trout during professional fishing operations on the Great Barrier Reef in 2000. Excel data includes the following fields: Column A. Fish (fish number from 1 -24) Column B. Bin (1-8, container the fish was held in during the experiment) Column C. Measure (1-7, number of the measurement of each fish) Column D. Observer (1 or 2, making the measurement) Column E. Time 2 Column F. Time (time of the day the measurement was made) Column G. FL (Fork Length) Column H. TL (Total Length) Column I. Difference (difference in length between measures) Column J. Order Column K. Temperature (surface water temp under the boat)
Resumo:
Regional impacts of climate change remain subject to large uncertainties accumulating from various sources, including those due to choice of general circulation models (GCMs), scenarios, and downscaling methods. Objective constraints to reduce the uncertainty in regional predictions have proven elusive. In most studies to date the nature of the downscaling relationship (DSR) used for such regional predictions has been assumed to remain unchanged in a future climate. However,studies have shown that climate change may manifest in terms of changes in frequencies of occurrence of the leading modes of variability, and hence, stationarity of DSRs is not really a valid assumption in regional climate impact assessment. This work presents an uncertainty modeling framework where, in addition to GCM and scenario uncertainty, uncertainty in the nature of the DSR is explored by linking downscaling with changes in frequencies of such modes of natural variability. Future projections of the regional hydrologic variable obtained by training a conditional random field (CRF) model on each natural cluster are combined using the weighted Dempster-Shafer (D-S) theory of evidence combination. Each projection is weighted with the future projected frequency of occurrence of that cluster (''cluster linking'') and scaled by the GCM performance with respect to the associated cluster for the present period (''frequency scaling''). The D-S theory was chosen for its ability to express beliefs in some hypotheses, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The methodology is tested for predicting monsoon streamflow of the Mahanadi River at Hirakud Reservoir in Orissa, India. The results show an increasing probability of extreme, severe, and moderate droughts due to limate change. Significantly improved agreement between GCM predictions owing to cluster linking and frequency scaling is seen, suggesting that by linking regional impacts to natural regime frequencies, uncertainty in regional predictions can be realistically quantified. Additionally, by using a measure of GCM performance in simulating natural regimes, this uncertainty can be effectively constrained.
Resumo:
The problem of phase uncertainty arising in calibration of the test fixtures is investigated in this paper, It is shown that the problem exists no matter what kinds of calibration standards are used. It is also found that there is no need to determine the individual S-parameters of the test fixtures. In order to eliminate the problem of phase uncertainty, three different precise (known) reflection standards or one known reflection standard plus one known transmission standard should be used to calibrate symmetrical test fixtures. For the asymmetrical cases, three known standards, including at least one transmission standard, should be used. The thru-open-match (TOM) and thru-short-match (TSM) techniques are the simplest methods, and they have no bandwidth limitation. When the standards are imprecise (unknown), it is recommended to use any suitable technique, such as the thru-reflect-line, line-reflect-line, thru-short-delay, thru-open-delay,line-reflect-match, line-reflect-reflect-match, or multiline methods, to accurately determine the values of the required calibration terms and, in addition, to use the TOM or TSM method with the same imprecise standards to resolve the phase uncertainty.
Resumo:
The remote sensing based Production Efficiency Models (PEMs), springs from the concept of "Light Use Efficiency" and has been applied more and more in estimating terrestrial Net Primary Productivity (NPP) regionally and globally. However, global NPP estimates vary greatly among different models in different data sources and handling methods. Because direct observation or measurement of NPP is unavailable at global scale, the precision and reliability of the models cannot be guaranteed. Though, there are ways to improve the accuracy of the models from input parameters. In this study, five remote sensing based PEMs have been compared: CASA, GLO-PEM, TURC, SDBM and VPM. We divided input parameters into three categories, and analyzed the uncertainty of (1) vegetation distribution, (2) fraction of photosynthetically active radiation absorbed by the canopy (fPAR) and (3) light use efficiency (e). Ground measurements of Hulunbeier typical grassland and meteorology measurements were introduced for accuracy evaluation. Results show that a real-time, more accurate vegetation distribution could significantly affect the accuracy of the models, since it's applied directly or indirectly in all models and affects other parameters simultaneously. Higher spatial and spectral resolution remote sensing data may reduce uncertainty of fPAR up to 51.3%, which is essential to improve model accuracy.
Resumo:
Critical loads are the basis for policies controlling emissions of acidic substances in Europe and elsewhere. They are assessed by several elaborate and ingenious models, each of which requires many parameters, and have to be applied on a spatially-distributed basis. Often the values of the input parameters are poorly known, calling into question the validity of the calculated critical loads. This paper attempts to quantify the uncertainty in the critical loads due to this "parameter uncertainty", using examples from the UK. Models used for calculating critical loads for deposition of acidity and nitrogen in forest and heathland ecosystems were tested at four contrasting sites. Uncertainty was assessed by Monte Carlo methods. Each input parameter or variable was assigned a value, range and distribution in an objective a fashion as possible. Each model was run 5000 times at each site using parameters sampled from these input distributions. Output distributions of various critical load parameters were calculated. The results were surprising. Confidence limits of the calculated critical loads were typically considerably narrower than those of most of the input parameters. This may be due to a "compensation of errors" mechanism. The range of possible critical load values at a given site is however rather wide, and the tails of the distributions are typically long. The deposition reductions required for a high level of confidence that the critical load is not exceeded are thus likely to be large. The implication for pollutant regulation is that requiring a high probability of non-exceedance is likely to carry high costs. The relative contribution of the input variables to critical load uncertainty varied from site to site: any input variable could be important, and thus it was not possible to identify variables as likely targets for research into narrowing uncertainties. Sites where a number of good measurements of input parameters were available had lower uncertainties, so use of in situ measurement could be a valuable way of reducing critical load uncertainty at particularly valuable or disputed sites. From a restricted number of samples, uncertainties in heathland critical loads appear comparable to those of coniferous forest, and nutrient nitrogen critical loads to those of acidity. It was important to include correlations between input variables in the Monte Carlo analysis, but choice of statistical distribution type was of lesser importance. Overall, the analysis provided objective support for the continued use of critical loads in policy development. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.
Resumo:
In the context of “testing laboratory” one of the most important aspect to deal with is the measurement result. Whenever decisions are based on measurement results, it is important to have some indication of the quality of the results. In every area concerning with noise measurement many standards are available but without an expression of uncertainty, it is impossible to judge whether two results are in compliance or not. ISO/IEC 17025 is an international standard related with the competence of calibration and testing laboratories. It contains the requirements that testing and calibration laboratories have to meet if they wish to demonstrate that they operate to a quality system, are technically competent and are able to generate technically valid results. ISO/IEC 17025 deals specifically with the requirements for the competence of laboratories performing testing and calibration and for the reporting of the results, which may or may not contain opinions and interpretations of the results. The standard requires appropriate methods of analysis to be used for estimating uncertainty of measurement. In this point of view, for a testing laboratory performing sound power measurement according to specific ISO standards and European Directives, the measurement of uncertainties is the most important factor to deal with. Sound power level measurement, according to ISO 3744:1994 , performed with a limited number of microphones distributed over a surface enveloping a source is affected by a certain systematic error and a related standard deviation. Making a comparison of measurement carried out with different microphone arrays is difficult because results are affected by systematic errors and standard deviation that are peculiarities of the number of microphones disposed on the surface, their spatial position and the complexity of the sound field. A statistical approach could give an overview of the difference between sound power level evaluated with different microphone arrays and an evaluation of errors that afflict this kind of measurement. Despite the classical approach that tend to follow the ISO GUM this thesis present a different point of view of the problem related to the comparison of result obtained from different microphone arrays.
Resumo:
T actitivity in LiPb LiPb mock-up material irradiated in Frascati: measurement and MCNP results