885 resultados para Uncertainty Based Online Planning
Resumo:
This research has responded to the need for diagnostic reference tools explicitly linking the influence of environmental uncertainty and performance within the supply chain. Uncertainty is a key factor influencing performance and an important measure of the operating environment. We develop and demonstrate a novel reference methodology based on data envelopment analysis (DEA) for examining the performance of value streams within the supply chain with specific reference to the level of environmental uncertainty they face. In this paper, using real industrial data, 20 product supply value streams within the European automotive industry sector are evaluated. Two are found to be efficient. The peer reference groups for the underperforming value streams are identified and numerical improvement targets are derived. The paper demonstrates how DEA can be used to guide supply chain improvement efforts through role-model identification and target setting, in a way that recognises the multiple dimensions/outcomes of the supply chain process and the influence of its environmental conditions. We have facilitated the contextualisation of environmental uncertainty and its incorporation into a specific diagnostic reference tool.
Resumo:
Scenarioplanning is a strategy tool with growing popularity in both academia and practical situations. Current practices of scenarioplanning are largely based on existing literature which utilises scenarioplanning to develop strategies for the future, primarily considering the assessment of perceived macro-external environmentaluncertainties. However there is a body of literature hitherto ignored by scenarioplanning researchers, which suggests that PerceivedEnvironmentalUncertainty (PEU) influences the micro-external as well as the internal environment of the organisation. This paper reviews the most dominant theories on scenarioplanning process and PEU, developing three propositions for the practice of scenarioplanning process. Furthermore, it shows how these propositions can be integrated in the scenarioplanning process in order to improve the development of strategy.
Resumo:
Otto-von Guericke-Universität Magdeburg, Fakultät für Maschinenbau, Dissertation, 2016
Resumo:
The paper presents a multi-robot cooperative framework to estimate the 3D position of dynamic targets, based on bearing-only vision measurements. The uncertainty of the observation provided by each robot equipped with a bearing-only vision system is effectively addressed for cooperative triangulation purposes by weighing the contribution of each monocular bearing ray in a probabilistic manner. The envisioned framework is evaluated in an outdoor scenario with a team of heterogeneous robots composed of an Unmanned Ground and Aerial Vehicle.
Resumo:
An online scheme to assign Stenotrophomonas isolates to genomic groups was developed using the multilocus sequence analysis (MLSA), which is based on the DNA sequencing of selected fragments of the housekeeping genes ATP synthase alpha subunit (atpA), the recombination repair protein (recA), the RNA polymerase alpha subunit (rpoA) and the excision repair beta subunit (uvrB). This MLSA-based scheme was validated using eight of the 10 Stenotrophomonas species that have been previously described. The environmental and nosocomial Stenotrophomonas strains were characterised using MLSA, 16S rRNA sequencing and DNA-DNA hybridisation (DDH) analyses. Strains of the same species were found to have greater than 95% concatenated sequence similarity and specific strains formed cohesive readily recognisable phylogenetic groups. Therefore, MLSA appeared to be an effective alternative methodology to amplified fragment length polymorphism fingerprint and DDH techniques. Strains of Stenotrophomonas can be readily assigned through the open database resource that was developed in the current study (www.steno.lncc.br/).
Resumo:
The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.
Resumo:
We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop–climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty.
Resumo:
Electronic applications are currently developed under the reuse-based paradigm. This design methodology presents several advantages for the reduction of the design complexity, but brings new challenges for the test of the final circuit. The access to embedded cores, the integration of several test methods, and the optimization of the several cost factors are just a few of the several problems that need to be tackled during test planning. Within this context, this thesis proposes two test planning approaches that aim at reducing the test costs of a core-based system by means of hardware reuse and integration of the test planning into the design flow. The first approach considers systems whose cores are connected directly or through a functional bus. The test planning method consists of a comprehensive model that includes the definition of a multi-mode access mechanism inside the chip and a search algorithm for the exploration of the design space. The access mechanism model considers the reuse of functional connections as well as partial test buses, cores transparency, and other bypass modes. The test schedule is defined in conjunction with the access mechanism so that good trade-offs among the costs of pins, area, and test time can be sought. Furthermore, system power constraints are also considered. This expansion of concerns makes it possible an efficient, yet fine-grained search, in the huge design space of a reuse-based environment. Experimental results clearly show the variety of trade-offs that can be explored using the proposed model, and its effectiveness on optimizing the system test plan. Networks-on-chip are likely to become the main communication platform of systemson- chip. Thus, the second approach presented in this work proposes the reuse of the on-chip network for the test of the cores embedded into the systems that use this communication platform. A power-aware test scheduling algorithm aiming at exploiting the network characteristics to minimize the system test time is presented. The reuse strategy is evaluated considering a number of system configurations, such as different positions of the cores in the network, power consumption constraints and number of interfaces with the tester. Experimental results show that the parallelization capability of the network can be exploited to reduce the system test time, whereas area and pin overhead are strongly minimized. In this manuscript, the main problems of the test of core-based systems are firstly identified and the current solutions are discussed. The problems being tackled by this thesis are then listed and the test planning approaches are detailed. Both test planning techniques are validated for the recently released ITC’02 SoC Test Benchmarks, and further compared to other test planning methods of the literature. This comparison confirms the efficiency of the proposed methods.
Resumo:
Quantitative data obtained by means of design-based stereology can add valuable information to studies performed on a diversity of organs, in particular when correlated to functional/physiological and biochemical data. Design-based stereology is based on a sound statistical background and can be used to generate accurate data which are in line with principles of good laboratory practice. In addition, by adjusting the study design an appropriate precision can be achieved to find relevant differences between groups. For the success of the stereological assessment detailed planning is necessary. In this review we focus on common pitfalls encountered during stereological assessment. An exemplary workflow is included, and based on authentic examples, we illustrate a number of sampling principles which can be implemented to obtain properly sampled tissue blocks for various purposes.
Resumo:
Texas State Department of Highways and Public Transportation, Transportation Planning Division, Austin
Resumo:
Bibliographical footnotes.
Resumo:
In economics of information theory, credence products are those whose quality is difficult or impossible for consumers to assess, even after they have consumed the product (Darby & Karni, 1973). This dissertation is focused on the content, consumer perception, and power of online reviews for credence services. Economics of information theory has long assumed, without empirical confirmation, that consumers will discount the credibility of claims about credence quality attributes. The same theories predict that because credence services are by definition obscure to the consumer, reviews of credence services are incapable of signaling quality. Our research aims to question these assumptions. In the first essay we examine how the content and structure of online reviews of credence services systematically differ from the content and structure of reviews of experience services and how consumers judge these differences. We have found that online reviews of credence services have either less important or less credible content than reviews of experience services and that consumers do discount the credibility of credence claims. However, while consumers rationally discount the credibility of simple credence claims in a review, more complex argument structure and the inclusion of evidence attenuate this effect. In the second essay we ask, “Can online reviews predict the worst doctors?” We examine the power of online reviews to detect low quality, as measured by state medical board sanctions. We find that online reviews are somewhat predictive of a doctor’s suitability to practice medicine; however, not all the data are useful. Numerical or star ratings provide the strongest quality signal; user-submitted text provides some signal but is subsumed almost completely by ratings. Of the ratings variables in our dataset, we find that punctuality, rather than knowledge, is the strongest predictor of medical board sanctions. These results challenge the definition of credence products, which is a long-standing construct in economics of information theory. Our results also have implications for online review users, review platforms, and for the use of predictive modeling in the context of information systems research.
Resumo:
Background : Developmental coordination disorder (DCD) is a prevalent neurodevelopmental disorder. Best practices include raising parents’ awareness and building capacity but few interventions incorporating these best practices are documented. Objective : To examine whether an evidence-based online module can increase the perceived knowledge and skills of parents of children with DCD, and lead to behavioural changes when managing their child’s health condition. Methods : A mixed-methods, before-after-follow-up design guided by the theory of planned behaviour was employed. Data about the knowledge, skills and behaviours of parents of children with DCD were collected using questionnaires prior to completing the module, immediately after, and three months later. One-way repeated measures ANOVAs and thematic analyses were performed on data as appropriate. Results : Fifty-eight participants completed all questionnaires. There was a significant effect of time on self-reported knowledge [F(2.00,114.00)=16.37, p=0.00] and skills [F(1.81,103.03)=51.37, p=0.00] with higher post- and follow-up scores than pre-intervention scores. Thirty-seven (65%) participants reported an intention to change behaviour postintervention; 29 (50%) participants had tried recommended strategies at follow-up. Three themes emerged to describe parents’ behavioural change: sharing information, trialing strategies and changing attitudes. Factors influencing parents’ ability to implement these behavioural changes included clear recommendations, time, and ‘right’ attitude. Perceived outcomes associated with the parental behavioural changes involved improvement in well-being for the children at school, at home, and for the family as a whole. Conclusions : The online module increased parents’ self-reported knowledge and skills in DCD management. Future research should explore its impacts on children’s outcomes long-term.
Resumo:
Background : Developmental coordination disorder (DCD) is a prevalent neurodevelopmental disorder. Best practices include raising parents’ awareness and building capacity but few interventions incorporating these best practices are documented. Objective : To examine whether an evidence-based online module can increase the perceived knowledge and skills of parents of children with DCD, and lead to behavioral changes when managing their child’s health condition. Methods : A mixed-methods, before-after design guided by the theory of planned behavior was employed. Data about the knowledge, skills and behaviors of parents of children with DCD were collected using questionnaires prior to completing the module, immediately after, and three months later. Paired T-tests, sensitivity analyses and thematic analyses were performed on data as appropriate. Results: One hundred-sixteen, 81 and 58 participants respectively completed the three questionnaires. For knowledge and skills, post- and follow-up scores were significantly higher than baseline scores (p<0.01). Fifty-two (64%) participants reported an intention to change behavior post-intervention and 29 (50%) participants had tried recommended strategies at follow-up. Three themes emerged to describe parents’ behavioral change: sharing information, trialing strategies and changing attitudes. Factors influencing parents’ ability to implement these behavioral changes included clear recommendations, time, and ‘right’ attitude. Perceived outcomes associated with the parental behavioral changes involved improvement in well-being for the children at school, at home, and for the family as a whole. Conclusions : The online module increased parents’ self-reported knowledge and skills in DCD management. Future research should explore its impacts on children’s long-term outcomes.