971 resultados para Ultrasound attenuation
Resumo:
Ultrasound has been examined previously as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose response to ultrasound transmission measurements. In this current work we extend previous work to measure the broadband ultrasound attenuation (BUA) response of irradiated PAGAT gel dosimeters, using a novel ultrasound computed tomography system.
Resumo:
Ultrasound has been previously investigated as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose responses. We extend previous work utilizing a new computed tomography ultrasound scanner comprising of two identical 5 MHz, 128-element linear-array ultrasound transducers, co-axially aligned and submerged in water as a coupling agent, with rotational of the gel dosimeter between the transducers facilitated by a robotic arm. We have investigated the dose-dependence of both ultrasound bulk attenuation and broadband ultrasound attenuation (BUA) for the PAGAT gel dosimeter. The ultrasound bulk attenuation dose sensitivity was found to be 1.46 ± 0.04 dB m −1 Gy −1, being in agreement with previously published results for PAG and MAGIC gels. BUA was also found to be dose dependent and was measured to be 0.024 ± 0.003 dB MHz −1 Gy −1; the advantage of BUA being its insensitivity to frequency-independent attenuation mechanisms including reflection and refraction, thereby minimizing image reconstruction artefacts.
Resumo:
This research developed and scientifically validated a new ultrasound transmission computed tomography system with the aim of quantitative assessment of a polymer gel dosimeter including dose response verification of ultrasonic parameters of attenuation, velocity and broadband ultrasound attenuation (BUA). This work was the first to investigate and report ultrasound frequency dependent attenuation in a gel dosimeter, demonstrating a dose dependence.
Resumo:
The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland–Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.
Resumo:
This thesis describes the development and scientific validation of a real-time quantitative 3D flat-bed ultrasound scanner. Novel short-time Fourier transform software facilitated broadband ultrasound attenuation maps of a breast phantom, enabling detection and identification of both cystic and solid lesions.
Resumo:
Recent studies have shown that ultrasound transit time spectroscopy (UTTS) is an alternative method to describe ultrasound wave propagation through complex samples as an array of parallel sonic rays. This technique has the potential to characterize bone properties including volume fraction and may be implemented in clinical systems to predict osteoporotic fracture risk. In contrast to broadband ultrasound attenuation, which is highly frequency dependent, we hypothesise that UTTS is frequency independent. This study measured 1 MHz and 5 MHz broadband ultrasound signals through a set of acrylic step-wedge samples. Digital deconvolution of the signals through water and each sample was applied to derive a transit time spectrum. The resulting spectra at both 1 MHz and 5 MHz were compared to the predicted transit time values. Linear regression analysis yields agreement (R2) of 99.23% and 99.74% at 1 MHz and 5 MHz respectively indicating frequency independence of transit time spectra.
Resumo:
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R2=99.9% and R2=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment.
Resumo:
This paper presents an ultrasonic method to measure small concentrations of water in lubricating oil. It uses an ultrasonic measurement cell composed by a piezoceramic emitter (5 and 10 MHz), and a large aperture PVDF receiver that eliminates diffraction effects. The propagation velocity, attenuation coefficient and density of several samples of water-in-oil emulsion were measured. The concentrations of water of the samples were in the range of 0 to 5% in volume, and the results showed that these low concentrations can be discriminated within a resolution of 0.2% in the studied range, using the measurement of the propagation velocity.
Resumo:
Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n 5 14 260), velocity of sound (VOS; n 5 15 514) and BMD (n 5 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n 5 11 452) and new genotyping in 15 cohorts (de novo n 5 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 3 108) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 3 1014). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 3 106 also had the expected direction of association with any fracture (P < 0.05), including threeSNPswithP < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, thisGWAstudy reveals the effect of several genescommon to central DXA-derivedBMDand heel ultrasound/DXAmeasures and points to anewgenetic locus with potential implications for better understanding of osteoporosis pathophysiology.
Resumo:
Phyto-oestrogens have been associated with a decreased risk for osteoporosis, but results from intervention and observational studies in Western countries have been inconsistent. In the present study, we investigated the association between habitual phyto-oestrogen intake and broadband ultrasound attenuation (BUA) of the calcanaeum as a marker of bone density. We collected 7 d records of diet, medical history and demographic and anthropometric data from participants (aged 45–75 years) in the European Prospective Investigation into Cancer-Norfolk study. Phyto-oestrogen (biochanin A, daidzein, formononetin; genistein, glycitein; matairesinol; secoisolariciresinol; enterolactone; equol) intake was determined using a newly developed food composition database. Bone density was assessed using BUA of the calcanaeum. Associations between bone density and phyto-oestrogen intake were investigated in 2580 postmenopausal women who were not on hormone replacement therapy and 4973 men. Median intake of total phyto-oestrogens was 876 (interquartile range 412) μg/d in postmenopausal women and 1212 (interquartile range 604) μg/d in men. The non-soya isoflavones formononetin and biochanin A were marginally significant or significantly associated with BUA in postmenopausal women (β = 1·2; P < 0·1) and men (β = 1·2; P < 0·05), respectively; enterolignans and equol were positively associated with bone density in postmenopausal women, but this association became non-significant when dietary Ca was added to the model. In the lowest quintile of Ca intake, soya isoflavones were positively associated with bone density in postmenopausal women (β = 1·4; P < 0·1). The present results therefore suggest that non-soya isoflavones are associated with bone density independent of Ca, whereas the association with soya or soya isoflavones is affected by dietary Ca.
A Comparative Analysis between Ultrasonometry and Computer-Aided Tomography to Evaluate Bone Healing
Resumo:
An ultrasonometric and computed-tomographic study of bone healing was undertaken using a model of a transverse mid-shaft osteotomy of sheep tibiae fixed with a semi-flexible external fixator. Fourteen sheep were operated and divided into two groups of seven according to osteotomy type, either regular or by segmental resection. The animals were killed on the 90th postoperative day and the tibiae resected for the in vitro direct contact transverse and axial measurement of ultrasound propagation velocity (UV) followed by quantitative computer-aided tomography (callus density and volume) through the osteotomy site. The intact left tibiae were used for control, being examined in a symmetrical diaphyseal segment. Regular osteotomies healed with a smaller and more mature callus than resection osteotomies. Axial UV was consistently and significantly higher (p?=?0.01) than transverse UV and both transverse and axial UV were significantly higher for the regular than for the segmental resection osteotomy. Transverse UV did not differ significantly between the intact and operated tibiae (p?=?0.20 for regular osteotomy; p?=?0.02 for resection osteotomy), but axial UV was significantly higher for the intact tibiae. Tomographic callus density was significantly higher for the regular than for the resection osteotomy and higher than both for the intact tibiae, presenting a strong positive correlation with UV. Callus volume presented an opposite behavior, with a negative correlation with UV. We conclude that UV is at least as precise as quantitative tomography for providing information about the healing state of both regular and resection osteotomy. (C) 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:10761082, 2012
Resumo:
Because of the important morbidity and mortality associated with osteoporosis, it is essential to detect subjects at risk by screening methods, such as bone quantitative ultrasounds (QUSs). Several studies showed that QUS could predict fractures. None, however, compared prospectively different QUS devices, and few data of quality controls (QCs) have been published. The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk is a prospective multicenter study that compared three QUSs for the assessment of hip fracture risk in a population of 7609 women age >/=70 yr. Because the inclusion phase lasted 20 mo, and because 10 centers participated in this study, QC became a major issue. We therefore developed a QC procedure to assess the stability and precision of the devices, and for their cross-calibration. Our study focuses on the two heel QUSs. The water bath system (Achilles+) had a higher precision than the dry system (Sahara). The QC results were highly dependent on temperature. QUS stability was acceptable, but Sahara must be calibrated regularly. A sufficient homogeneity among all the Sahara devices could be demonstrated, whereas significant differences were found among the Achilles+ devices. For speed of sound, 52% of the differences among the Achilles+ was explained by the water s temperature. However, for broadband ultrasound attenuation, a maximal difference of 23% persisted after adjustment for temperature. Because such differences could influence measurements in vivo, it is crucial to develop standardized phantoms to be used in prospective multicenter studies.