996 resultados para Ultrasonic Imaging
Resumo:
Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining displacements measured along the different beam directions. Previously, beamsteering has only considered the 2D case to improve the lateral displacement estimates. In this paper, we extend this to 3D using a simulated 2D array to steer both laterally and elevationally in order to estimate the full 3D displacement vector over a volume. The method is tested on simulated and phantom data using a simulated 6-10MHz array, and the precision of displacement estimation is measured with and without beamsteering. In simulations, we found a statistically significant improvement in the precision of lateral and elevational displacement estimates: lateral precision 35.69μm unsteered, 3.70μm steered; elevational precision 38.67μm unsteered, 3.64μm steered. Similar results were found in the phantom data: lateral precision 26.51μm unsteered, 5.78μm steered; elevational precision 28.92μm unsteered, 11.87μm steered. We conclude that volumetric 3D beamsteering improves the precision of lateral and elevational displacement estimates.
Resumo:
Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining displacements measured along the different beam directions. Previously, beamsteering has only considered the 2D case to improve the lateral displacement estimates. In this paper, we extend this to 3D using a simulated 2D array to steer both laterally and elevationally in order to estimate the full 3D displacement vector over a volume. The method is tested on simulated and phantom data using a simulated 6-10 MHz array, and the precision of displacement estimation is measured with and without beamsteering. In simulations, we found a statistically significant improvement in the precision of lateral and elevational displacement estimates: lateral precision 35.69 μm unsteered, 3.70 μm steered; elevational precision 38.67 μm unsteered, 3.64 μm steered. Similar results were found in the phantom data: lateral precision 26.51 μm unsteered, 5.78 μm steered; elevational precision 28.92 μm unsteered, 11.87 μm steered. We conclude that volumetric 3D beamsteering improves the precision of lateral and elevational displacement estimates. © 2012 Elsevier B.V. All rights reserved.
Resumo:
This work studies the use of ultrasonic imaging as an evaluation tool in concrete subjected to freeze–thaw (F–T) cycles. To evaluate the damage in this deterioration process, ultrasonic velocity and attenuation images have been generated from concrete specimens with and without air-entraining agents. Two parameters have been proposed from these ultrasonic images according to our experimental setup: the non-assessable area proportion (NAAP) and a weighted average velocity in terms of the NAAP. The proposed parameters have been compared with the recommended failure criteria of the ASTM and Rilem standards, which employ ultrasonic contact measurements. The principal advantage of the use of ultrasonic images and the proposed methodology in comparison with the ultrasonic velocity measurements by contact is the possibility of detection of incipient damage caused by accelerated freeze–thaw cycles.
Resumo:
Carbon fiber reinforced polymer (CFRP) composite specimens with different thickness, geometry, and stacking sequences were subjected to fatigue spectrum loading in stages. Another set of specimens was subjected to static compression load. On-line acoustic Emission (AE) monitoring was carried out during these tests. Two artificial neural networks, Kohonen-self organizing feature map (KSOM), and multi-layer perceptron (MLP) have been developed for AE signal analysis. AE signals from specimens were clustered using the unsupervised learning KSOM. These clusters were correlated to the failure modes using available a priori information such as AE signal amplitude distributions, time of occurrence of signals, ultrasonic imaging, design of the laminates (stacking sequences, orientation of fibers), and AE parametric plots. Thereafter, AE signals generated from the rest of the specimens were classified by supervised learning MLP. The network developed is made suitable for on-line monitoring of AE signals in the presence of noise, which can be used for detection and identification of failure modes and their growth. The results indicate that the characteristics of AE signals from different failure modes in CFRP remain largely unaffected by the type of load, fiber orientation, and stacking sequences, they being representatives of the type of failure phenomena. The type of loading can have effect only on the extent of damage allowed before the specimens fail and hence on the number of AE signals during the test. The artificial neural networks (ANN) developed and the methods and procedures adopted show significant success in AE signal characterization under noisy environment (detection and identification of failure modes and their growth).
Resumo:
Study of fatigue phenomenon in composites requires a dynamic tool which can detect and identify different failure mechanisms involved. The tool should also be capable of monitoring the cumulative damage progression on-line. Acoustic Emission Technique has been utilized in the experimental investigations on unidirectional carbon fiber reinforced plastic (CFRP) composite specimens subjected to tension-tension fatigue. Amplitude as well as frequency distribution of Acoustic Emission (AE) signals have been studied to detect and characterize different failure mechanisms. For a quantitative measure of degradation of the material with fatigue load cycles, reduction in stiffness of the specimen has been measured intermittently. Ultrasonic imaging could give the information on the changes in the interior status of the material at different stages of fatigue life.
Resumo:
Fetal lung and liver tissues were examined by ultrasound in 240 subjects during 24 to 38 weeks of gestational age in order to investigate the feasibility of predicting the maturity of the lung from the textural features of sonograms. A region of interest of 64 X 64 pixels is used for extracting textural features. Since the histological properties of the liver are claimed to remain constant with respect to gestational age, features obtained from the lung region are compared with those from liver. Though the mean values of some of the features show a specific trend with respect to gestation age, the variance is too high to guarantee definite prediction of the gestational age. Thus, we restricted our purview to an investigation into the feasibility of fetal lung maturity prediction using statistical textural features. Out of 64 features extracted, those features that are correlated with gestation age and less computationally intensive are selected. The results of our study show that the sonographic features hold some promise in determining whether the fetal lung is mature or immature.
Resumo:
A Monte Carlo model of ultrasound modulation of multiply scattered coherent light in a highly scattering media has been carried out for estimating the phase shift experienced by a photon beam on its transit through US insonified region. The phase shift is related to the tissue stiffness, thereby opening an avenue for possible breast tumor detection. When the scattering centers in the tissue medium is exposed to a deterministic forcing with the help of a focused ultrasound (US) beam, due to the fact that US-induced oscillation is almost along particular direction, the direction defined by the transducer axis, the scattering events increase, thereby increasing the phase shift experienced by light that traverses through the medium. The phase shift is found to increase with increase in anisotropy g of the medium. However, as the size of the focused region which is the region of interest (ROI) increases, a large number of scattering events take place within the ROI, the ensemble average of the phase shift (Delta phi) becomes very close to zero. The phase of the individual photon is randomly distributed over 2 pi when the scattered photon path crosses a large number of ultrasound wavelengths in the focused region. This is true at high ultrasound frequency (1 MHz) when mean free path length of photon l(s) is comparable to wavelength of US beam. However, at much lower US frequencies (100 Hz), the wavelength of sound is orders of magnitude larger than l(s), and with a high value of g (g 0.9), there is a distinct measurable phase difference for the photon that traverses through the insonified region. Experiments are carried out for validation of simulation results.
Resumo:
In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.
Resumo:
In this report, we present a Born-ratio type of data normalization for reconstruction of initial acoustic pressure distribution in photoacoustic tomography (PAT). The normalized Born-ratio type of data is obtained as a ratio of photoacoustic pressure obtained with tissue sample in a coupling medium to the one obtained using purely coupling medium. It is shown that this type of data normalization improves the quantitation (intrinsic contrast) of the reconstructed images in comparison to the traditional techniques (unnormalized) that are currently available in PAT. Studies are carried out using various tissue samples. The robustness of the proposed method is studied at various noise levels added to the collected data. The improvement in quantitation can enable accurate estimation of pathophysiological parameter (optical absorption coefficient, a) of tissue sample under investigation leading to better sensitivity in PAT.