1000 resultados para URSOLIC ACID
Resumo:
DEVELOPMENT AND VALIDATION OF A HPLC METHOD FOR QUANTIFICATION OF URSOLIC ACID IN SOLID DISPERSIONS. Ursolic acid is a natural molecule that presents several pharmacological properties. In this work, an analytical method by RP-HPLC has been developed and validated for quantification of this drug in the solid dispersions, using PEG 6000 and Poloxamer 407 as polymers. The method was specific, linear in the range of 1.0-50.0 mu g mL(-1) (r<0.99), precise (CV < 5% for both inter-and intra-assays), accurate (maximum deviation of +/- 13%), and robust to the parameters evaluated. This method has proved to be simple and useful for ursolic acid determination in solid dispersions, enabling its determination in pharmaceutical dosage form.
Resumo:
More than 40% of the World population is at risk of contracting malaria, which affects primarily poor populations in tropical and subtropical areas. Antimalarial pharmacotherapy has utilised plant-derived products such as quinine and artemisinin as well as their derivatives. However, worldwide use of these antimalarials has caused the spread of resistant parasites, resulting in increased malaria morbidity and mortality. Considering that the literature has demonstrated the antimalarial potential of triterpenes, specially betulinic acid (1) and ursolic acid (2), this study investigated the antimalarial activity against P. falciparum chloroquine-sensitive 3D7 strain of some new derivatives of 1 and 2 with modifications at C-3 and C-28. The antiplasmodial study employed flow cytometry and spectrofluorimetric analyses using YOYO-1, dihydroethidium and Fluo4/AM for staining. Among the six analogues obtained, compounds 1c and 2c showed excellent activity (IC50 = 220 and 175 nM, respectively) while 1a and b demonstrated good activity ( IC50 = 4 and 5 mu M, respectively). After cytotoxicity evaluation against HEK293T cells, 1a was not toxic, while 1c and 2c showed IC50 of 4 mu M and a selectivity index (SI) value of 18 and 23, respectively. Moreover, compound 2c, which presents the best antiplasmodial activity, is involved in the calcium-regulated pathway(s).
Resumo:
Ursolic acid (UA) has been recently proposed as a potential candidate for the treatment of muscle wasting conditions because of its protein sparring/anabolic effects. Despite this finding, it is unknown whether this response is the consequence of a direct effect on the muscle fibre or if it is mediated by neural or other systemic factors. In the present study, we sought to determine if UA has direct effects in skeletal muscle cells, whether it can increase myoblast proliferation and whether UA can become myotoxic at higher doses. Our results demonstrate that UA directly promoted protein accretion in cultured myotubes but did not modulate myoblast proliferation. At higher doses, UA compromised cell viability in both myoblasts and myotubes. We conclude that the anabolic properties of UA seen in vivo and in vitro are likely a direct effect on the muscle cell, but at higher doses, the benefits decline in favour of a myotoxic outcome. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Solid dispersions (SDs) are an approach to increasing the water solubility and bioavailability of lipophilic drugs such as ursolic acid (UA), a triterpenoid with trypanocidal activity. In this work, Gelucire 50/13, a surfactant compound with permeability-enhancing properties, and silicon dioxide, a drying adjuvant, were employed to produce SDs with UA. SDs and physical mixtures (PMs) in different drug/carrier ratios were characterized and compared using differential scanning calorimetry, hot stage microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size, water solubility values, and dissolution profiles. Moreover, LLC-MK2 fibroblast cytotoxicity and trypanocidal activity evaluation were performed to determine the potential of SD as a strategy to improve UA efficacy against Chagas disease. The results demonstrated the conversion of UA from the crystalline to the amorphous state through XRD. FTIR experiments provided evidence of intermolecular interactions among the drug and carriers through carbonyl peak broadening in the SDs. These findings helped explain the enhancement of water solubility from 75.98 mu g/mL in PMs to 293.43 mu g/mL in SDs and the faster drug release into aqueous media compared with pure UA or PMs, which was maintained after 6 months at room temperature. Importantly, improved SD dissolution was accompanied by higher UA activity against trypomastigote forms of Trypanosoma cruzi, but not against mammalian fibroblasts, enhancing the potential of UA for Chagas disease treatment.
Resumo:
The in vitro inhibitory activity of crude EtOH/H(2)O extracts from the leaves and stems of Rosmarinus officinalis L. was evaluated against the following microorganisms responsible for initiating dental caries: Streptococcus mutans, salivarius, S. sobrinus, S. mitts 5 sanguinis, and Enterococcus faecalis. Minimum inhibitory concentrations (MIC) were determined with the broth microdilution method. The bioassay-guided fractionation of the leaf extract, which displayed the higher antibacterial activity than the stem extract, led to the identification of carnosic acid (2) and carnosol (3) as the major compounds in the fraction displaying the highest activity, as identified by HPLC analysis. Rosmarinic acid (1), detected in another fraction, did not display any activity against the selected microorganisms. HPLC Analysis revealed the presence of low amounts of ursolic acid (4) and oleanolic acid (5) in the obtained fractions. The results suggest that the antimicrobial activity of the extract from the leaves of R. officinalis may be ascribed mainly to the action of 2 and 3.
Resumo:
Byrsonima basiloba A. Juss. species is a native arboreal type from the Brazilian ""cerrado"" (tropical American savanna), and the local population uses it to treat diseases, such as diarrhea and gastric ulcer. It belongs to the Malpighiaceae family, and it is commonly known as ""murici."" Considering the popular use of B. basiloba derivatives and the lack of pharmacological potential studies regarding this vegetal species, the mutagenic and antimutagenic effect of methanol (MeOH) and chloroform extracts were evaluated by the Ames test, using strains TA97a, TA98, TA100, and TA102 of Salmonella typhimurium. No mutagenic activity was observed in any of the extracts. To evaluate the antimutagenic potential, direct and indirect mutagenic agents were used: 4 nitro-o-phenylenediamine, sodium azide, mitomycin C, aflatoxin B(1), benzo[a] pyrene, and hydrogen peroxide. Both the extracts evaluated showed antimutagenic activity, but the highest value of inhibition level (89%) was obtained with the MeOH extract and strain TA100 in the presence of aflatoxin B(1). Phytochemical analysis of the extracts revealed the presence of n-alkanes, lupeol, ursolic and oleanolic acid, (+)-catechin, quercetin- 3-O-alpha-L-arabinopyranoside, gallic acid, methyl gallate, amentoflavone, quercetin, quercetin-3-O-(2 ''-O-galloyl)-beta-D-galactopyranoside, and quercetin-3-O-(2 ''-O-galloyl)-alpha-L-arabinopyranoside.
Resumo:
The in vitro activity of the crude hydroalcoholic extract of the aerial parts of Miconia langsdorffii Cogn. was evaluated against the promastigote forms of L. amazonensis, the causative agent of cutaneous leishmaniasis in humans. The bioassay-guided fractionation of this extract led to identification of the triterpenes ursolic acid and oleanolic acid as the major compounds in the fraction that displayed the highest activity. Several ursolic acid semi-synthetic derivatives were prepared, to find out whether more active compounds could be obtained. Among these ursolic acid-derived substances, the C-28 methyl ester derivative exhibited the best antileishmanial activity.
Resumo:
Plinia edulis, an arboreous species popularly known as ""cambuca"", is native to the Brazilian Atlantic Rain Forest. Despite its traditional uses, no reports are available on the safety of this utilization or on the relationship between the antiulcer activity of its extract and its phytochemical compounds. This paper reports on the investigation of the acute toxicity and gastroprotective effect of the aqueous ethanol extract of leaves of Plinia edulis on HCl/ethanol-induced ulcers. In order to correlate the secondary metabolites and the efficacy of the crude drug in traditional medicine, the extract was submitted to chromatographic fractionation after solvent partition. The extract did not show acute toxicity in mice treated with 5 g/kg p.o.. but exhibited significant antiulcer activity in rats at doses of 100, 200, and 400 mg/kg p.o., more active than the reference drug lansoprazole. The ethyl acetate fraction yielded P-amyrin, oleanolic acid, ursolic acid, and maslinic acid, which were identified based on spectrometric analyses. Since antiulcerogenic activity is not restricted to one class of compounds in plants, the triterpenoids isolated in the extract can be associated with the observed effect. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Baccharis dracunculifolia D. C. (Asteraceae) is the most important plant source of the Brazilian green propolis. Since propolis is known for its antimicrobial activity, the aim of this work was to evaluate the showed that the leaves extract of B. dracunculifolia (BdE) presents antifungal and antibacterial activities, especially against Candida krusei and Cryptococcus neoformans, for which the BdE showed IC50 values of 65 mu g mL(-1) and 40 mu g mL(-1), respectively In comparison to the BdE, it was observed that the green propolis extract (GPE) showed better antimicrobial activity, displaying an IC50 value of 9 mu g mL(-1) against C krusei. Also, a phytochemical study of the BdE was carried out, affording the isolation of ursolic acid (1), 2 alpha-hydroxy-ursolic acid (2), isosakuranetin (3), aromadendrin-4`-methylether (4), baccharin (5), viscidone (6), hautriwaic acid lactone (7), and the clerodane diterpene 8. This is the first time that the presence of compounds 1, 2, and 8 in B. dracunculifolia has been reported. Among the isolated compounds, 1 and 2 showed antibacterial activity against methicillin-resistant Staphylococcus aureus, displaying IC50 values of 65 mu g mL(-1) and 40 mu g mL(-1), respectively. 3 was active against C neoformans, showing an IC50 value of 15 mu g mL(-1) and a MIC value of 40 mu g mL(-1), while compounds 4-8 were inactive against all tested microorganisms. The results showed that the BdE, similar to the GPE, displays antimicrobial activity, which may be related to the effect of several compounds present in the crude extract.
Resumo:
Baccharis dracunculifolia (Asteraceae), the most important plant source of the Brazilian green propolis (GPE), displayed in vitro activity against Leishmania donovani. with an IC(50) value of 45 mu g/mL. while GPE presented an IC(50) value of 49 mu g/mL Among the isolated compounds of B. dracunculifolia, ursolic acid, and hautriwaic acid lactone showed IC(50) values of 3.7 mu g/mL and 7.0 mu g/mL, respectively. Uvaol, acacetin, and ermanin displayed moderate antileishmanial activity. Regarding the antiplasmodial assay against Plasmodium falciparum, BdE and GPE gave similar IC(50) values (about 20 mu g/mL), while Hautriwaic acid lactone led to an IC(50) value of 0.8 mu g/mL (D6 clone). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Baccharin (3-prenyl-4-(dihydrocinnamoyloxy)cinnamic acid) is an important chemical compound isolated from the aerial parts of Baccharis dracunculifolia DC (Asteraceae), a native plant of South America, and the most important plant source of Brazilian green propolis. The present study was designed to investigate the ability of baccharin to modulate the genotoxic effects induced by doxorubicin and methyl methanesulphonate in male Swiss mice using the micronucleus and comet assays, respectively. The different doses of baccharin [0.12, 0.24 and 0.48 mg/kg body-weight (b.w.)] were administered simultaneously to doxorubicin (micronucleus test; 15 mg/kg b.w.) and to methyl methanesulphonate (comet assay; 40 mg/kg b.w.). The results showed a significant decrease in the frequency of micronucleated polychromatic erythrocytes in animals treated with baccharin and doxorubicin compared to animals that received only doxorubicin. This reduction ranged from 39.8% to 50.7% in the micronucleus test. The extent of DNA damage in liver cells was significantly lower in animals treated with different concentrations of baccharin combined with methyl methanesulphonate in comparison with the damage observed for animals treated only with methyl methanesulphonate. These differences resulted in a significant reduction in the extent of DNA damage, which ranged from 47.8% to 60.6%.
Resumo:
The present study evaluates the in vitro and in vivo trypanocidal activity of ursolic acid and oleanolic acid against the Bolivia strain of Trypanosoma cruzi. Their acute toxicity is also assessed on the basis of median lethal dose (DL50) determination and quantification of biochemical parameters. Ursolic acid is the most active compound in vitro, furnishing IC50 of 25.5 mu M and displaying 77% of trypomastigote lysis at a concentration of 128 A mu M. In agreement with in vitro assays, the results obtained for the in vivo assay reveals that ursolic acid (at a dose of 20 mg/Kg/day) provides the most significant reduction in the number of parasites at the parasitemic peak. Results concerning the LD50 assay and the biochemical parameters evaluated in the present study demonstrate that these substances can be safely used on an experimental basis.
Resumo:
In this study we report the screening of the in vitro trypanocidal activity of 20 extracts obtained from 10 different plant species growing in the Brazilian Cerrado: Aspidosperma macrocarpum Mart. (Apocynaceae), Aegiphila sellowiano Cham. (Verbenaceae), Byrsonima intermedia Juss. (Malpighiaceae), Cyperus rotundus L. (Cyperaceae), Leandra lacunosa Cogn. (Melastomataceae), Miconia ligustroides (DC.) Naudin. (Melastomataceae), Miconia sellowiana Naudin.(Melastomataceae),Myrcia variabilis Mart.ex DC. (Myrtaceae), Solanum lycocarpum St. Hil. (Solanaceae), and Tibouchina stenocarpa Cogn. (Melastomataceae). The most active extracts were submitted to phytochemical analyses. High-resolution gas chromatography analysis of the n-hexane extract of T. stenocarpa (IC(50) = 23.6 mu g/mL), the most active extract amongst all the tested samples, allowed the identification of beta-amyrin, alpha-amyrin, lupeol, friedelin, beta-friedelanol, campesterol, stigmasterol, and beta-sitosterol. Oleanolic and ursolic acids were isolated from the methylene chloride extract of T stenocarpa (IC(50) = 51.5 mu g/mL), while ursolic acid was isolated from the methylene chloride extract of M. variabilis (IC(50)=38.4 mu g/mL). Solasonine and solamargine were identified as major compounds by mass spectrometry analysis in the hydroalcoholic extract of the fruits of S. lycocarpum (IC(50)=57.1 mu g/mL).The results showed that the trypanocidal activity may be related to the major compounds identified in the crude active extracts.
Resumo:
Two minor saponins obtained from the methanolic extract of the leaves of Ilex paraguariensis have been characterised by 13C-NMR, 1H-NMR, API-MS and chemical hydrolysis as oleanolic acid-3-O-(beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl)-(28-->1)- beta-D-glucopyranosyl ester (guaiacin B) and oleanolic acid-3-O-(beta-D-glucopyranosyl-(1-->3)-(alpha-L-rhamnopyranosyl- (1-->2))-alpha-L-arabinopyranosyl)-(28-->1)-beta-D-glucopyranosyl ester (nudicaucin C). Both are isomeric forms of the known matesaponins 1 (MSP 1) and 2 (MSP 2) and differ only by the nature of the aglycone: they have oleanolic acid instead of ursolic acid, as found in the matesaponins. These minor saponins have not been fully separated from their major isomers MSP 1 and 2 and were characterised by in-mixture NMR analysis, LC-MS and LC-MSn experiments.
Resumo:
This phytochemical study performed with the cytotoxic chloroformic extract of Eriope blanchetii (Benth.) Harley was the first work with this species and describes from aerial parts the isolation of two lignans of podophylotoxin type named beta-peltatin and alpha-peltatin. Besides them it was obtained four triterpenes; oleanolic acid, ursolic acid, 2alpha,3beta-dihydroxy-urs-12-en-28-olic acid, 2alpha,3beta,19alpha-trihydroxy-urs-12-en-28-olic acid, named tormentic acid and 3beta-glucosyl-sitosterol. The compounds were identified by analysis of their spectral data.