188 resultados para UDP-glucuronosyltransferase
Resumo:
The UDP-glucuronosyltransferases (UGTs) are enzymes of the phase II metabolic system. These enzymes catalyze the transfer of α-D-glucuronic acid from UDP-glucuronic acid to aglycones bearing nucleophilic groups affording exclusively their corresponding β-D-glucuronides to render lipophilic endobiotics and xenobiotics more water soluble. This detoxification pathway aids in the urinary and biliary excretion of lipophilic compounds thus preventing their accumulation to harmful levels. The aim of this study was to investigate the effect of stereochemical and steric features of substrates on the glucuronidation catalyzed by UGTs 2B7 and 2B17. Furthermore, this study relates to the design and synthesis of novel, selective inhibitors that display high affinity for the key enzyme involved in drug glucuronidation, UGT2B7. The starting point for the development of inhibitors was to assess the influence of the stereochemistry of substrates on the UGT-catalyzed glucuronidation reaction. A set of 28 enantiomerically pure alcohols was subjected to glucuronidation assays employing the human UGT isoforms 2B7 and 2B17. Both UGT enzymes displayed high stereoselectivity, favoring the glucuronidation of the (R)-enantiomers over their respective mirror-image compounds. The spatial arrangement of the hydroxy group of the substrate determined the rate of the UGT-catalyzed reaction. However, the affinity of the enantiomeric substrates to the enzymes was not significantly influenced by the spatial orientation of the nucleophilic hydroxy group. Based on these results, a rational approach for the design of inhibitors was developed by addressing the stereochemical features of substrate molecules. Further studies showed that the rate of the enzymatic glucuronidation of substrates was also highly dependent on the steric demand in vicinity of the nucleophilic hydroxy group. These findings provided a rational approach to turn high-affinity substrates into true UGT inhibitors by addressing stereochemical and steric features of substrate molecules. The tricyclic sesquiterpenols longifolol and isolongifolol were identified as high-affinity substrates which displayed high selectivity for the UGT isoform 2B7. These compounds served therefore as lead structures for the design of potent and selective inhibitors for UGT2B7. Selective and potent inhibitors were prepared by synthetically modifying the lead compounds longifolol and isolongifolol taking stereochemical and steric features into account. The best inhibitor of UGT2B7, β-phenyllongifolol, displayed an inhibition constant of 0.91 nM.
Resumo:
BACKGROUND: We have previously shown that a functional polymorphism of the UGT2B15 gene (rs1902023) was associated with increased risk of prostate cancer (PC). Novel functional polymorphisms of the UGT2B17 and UGT2B15 genes have been recently characterized by in vitro assays but have not been evaluated in epidemiologic studies. METHODS: Fifteen functional SNPs of the UGT2B17 and UGT2B15 genes, including cis-acting UGT2B gene SNPs, were genotyped in African American and Caucasian men (233 PC cases and 342 controls). Regression models were used to analyze the association between SNPs and PC risk. RESULTS: After adjusting for race, age and BMI, we found that six UGT2B15 SNPs (rs4148269, rs3100, rs9994887, rs13112099, rs7686914 and rs7696472) were associated with an increased risk of PC in log-additive models (p < 0.05). A SNP cis-acting on UGT2B17 and UGT2B15 expression (rs17147338) was also associated with increased risk of prostate cancer (OR = 1.65, 95% CI = 1.00-2.70); while a stronger association among men with high Gleason sum was observed for SNPs rs4148269 and rs3100. CONCLUSIONS: Although small sample size limits inference, we report novel associations between UGT2B15 and UGT2B17 variants and PC risk. These associations with PC risk in men with high Gleason sum, more frequently found in African American men, support the relevance of genetic differences in the androgen metabolism pathway, which could explain, in part, the high incidence of PC among African American men. Larger studies are required.
Resumo:
Background Located in the Pacific Ocean between Australia and New Zealand, the unique population isolate of Norfolk Island has been shown to exhibit increased prevalence of metabolic disorders (type-2 diabetes, cardiovascular disease) compared to mainland Australia. We investigated this well-established genetic isolate, utilising its unique genomic structure to increase the ability to detect related genetic markers. A pedigree-based genome-wide association study of 16 routinely collected blood-based clinical traits in 382 Norfolk Island individuals was performed. Results A striking association peak was located at chromosome 2q37.1 for both total bilirubin and direct bilirubin, with 29 SNPs reaching statistical significance (P < 1.84 × 10−7). Strong linkage disequilibrium was observed across a 200 kb region spanning the UDP-glucuronosyltransferase family, including UGT1A1, an enzyme known to metabolise bilirubin. Given the epidemiological literature suggesting negative association between CVD-risk and serum bilirubin we further explored potential associations using stepwise multivariate regression, revealing significant association between direct bilirubin concentration and type-2 diabetes risk. In the Norfolk Island cohort increased direct bilirubin was associated with a 28 % reduction in type-2 diabetes risk (OR: 0.72, 95 % CI: 0.57-0.91, P = 0.005). When adjusted for genotypic effects the overall model was validated, with the adjusted model predicting a 30 % reduction in type-2 diabetes risk with increasing direct bilirubin concentrations (OR: 0.70, 95 % CI: 0.53-0.89, P = 0.0001). Conclusions In summary, a pedigree-based GWAS of blood-based clinical traits in the Norfolk Island population has identified variants within the UDPGT family directly associated with serum bilirubin levels, which is in turn implicated with reduced risk of developing type-2 diabetes within this population.
Resumo:
Lääkeainemetabolialla tarkoitetaan entsymaattisia reaktioita, jotka muuttavat lääkeaineita paremmin elimistöstä poistuvaan muotoon. Lääkeaineet voivat vaikuttaa toistensa metaboliaan inhiboimalla tai indusoimalla metaboloivia entsyymejä. Tällaisten interaktioiden seurauksena lääkeaineen pitoisuus elimistössä voi kasvaa jopa toksiseksi tai vähentyä merkittävästi. Tämä on erityisesti ongelmana silloin, kun käytössä on useita lääkkeitä samanaikaisesti. Lääketutkimuksessa onkin keskitytty tällaisten interaktioiden ennustamiseen ja niitä yritetään välttää tai ainakin vähentää. Työssä tutkittiin medetomidiinia, jonka on äskettäin havaittu metaboloituvan UDP-glukuronosyylitransferaasien (UGT) välityksellä. Työn tarkoituksena oli löytää medetomidiinin glukuronidaatiota inhiboivia yhdisteitä. Lisäksi haluttiin selvittää mahdollisen inhibition mekanismeja. On yleistä tutkia tietyn entsyymin substraatin interaktioita muiden saman perheen entsyymien kanssa. On kuitenkin harvinaisempaa tutkia tällaisia interaktioita kahden eri entsyymiperheen välillä. Tässä työssä tutkittiin inhiboivatko mahdolliset sytokromi P450 -entsyymiä (CYP) inhiboivat yhdisteet myös medetomidiinia glukuronoivia UDP-glukuronosyylitransferaaseja. Glukuronidaation inhibitiota tutkittiin HPLC-menetelmällä, joka on kehitetty aiemmin medetomidiinin glukuronidaation tutkimiseen. Aluksi glukuronidaatiota tutkittiin ilman inhibiittoreita. Tämän jälkeen tutkittiin kolmen mahdollisen inhibiittoriyhdisteen vaikutuksia medetomidiinin glukuronidaatioon ja tuloksia verrattiin ilman inhibiittoria saatuihin tuloksiin. Kolmen tutkitun yhdisteen havaittiin inhiboivan medetomidiinin glukuronidaatiota. Tutkimuksessa havaittiin myös mielenkiintoinen ilmiö, jossa inhibiittoriyhdisteen sitoutuminen aiheutti entsyymikineettisiä muutoksia UDP-glukuronosyylitransferaasin toiminnassa. On mielenkiintoista, että samat yhdisteet inhiboivat sekä CYP- että UGT-metaboliaa. Tulosten perusteella voidaan päätellä, että jos CYP ja UGT metaboloivat samaa yhdistettä, on mahdollista että yhdisteen rakenteelliset analogit aiheuttavat interaktioita molempien entsyymien kanssa. Uusia lääkeaineita kehitettäessä onkin otettava huomioon yleisesti tunnettujen CYP-entsyymien lisäksi myös UGT:t ja niiden mahdolliset yhteisvaikutukset.
Resumo:
Silver carp (Hypophthalmichthys molitrix) samples were collected from five selected sites that represent diverse levels of downgraded persistent organic pollutants (POPs) contamination in Ya-Er Lake in October 1999. Hepatic ethoxyresorufin-O-deethylase (EROD) and UDP glucuronosyltransferase (UDPGT) activities, hepatosomatic index (HSI), hepatic retinoids, serum thyroid hormones were measured. It was found that hepatic retinol and serum free 3,5,3'- tetraiodothyronine (FT3) significantly increased (P < 0.01) when both hepatic EROD and UDPGT activities significantly declined (P < 0.01) from pond 1 to 5 with decrease in the degree of pollution. This significant negative correlation (P < 0.01) suggests that the persistent organochlorinated contaminants could induce hepatic EROD and UDPGT activities, alter retinoid and thyroid hormone homeostasis, and finally lead to the reduction of retinol and FT3, the two biologically active forms of retinoids and thyroid hormone in silver carp of Ya-Er Lake. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Contexte: L’inactivation des androgènes est majoritairement régulée par des enzymes du métabolisme de la famille des UDP-glucuronosyltransferase (UGT). Ce procédé métabolique permet de contrôler la biodisponibilité des hormones stéroïdiennes systémiques et locales. Objectif : L’objectif était d’étudier la relation entre l’expression de l’enzyme UDP-glucuronosyltransferase 2B polypeptide 28 (UGT2B28), impliquée dans la biotransformation des hormones, avec les niveaux hormonaux circulants, et les caractéristiques clinico-pathologiques dans le cancer de la prostate (CaP). Conception et participants : Nous avons utilisé dans cette étude la technique d’immunohostochimie à grande échelle (tissue microarray) sur les tissus de 239 patients ayant un CaP localisé. L’étude des 51 patients additionnels ne possédant pas l’enzyme UGT2B28 dans leur génome, a été effectuée pour confirmer l’importance de cette enzyme sur les niveaux hormonaux circulants. Résultats : La surexpression de l’enzyme UGT2B28 a été associée à des niveaux d’antigène prostatique spécifique (APS) au diagnostic plus faibles, à un score de Gleason plus élevé, à des marges et statuts nodaux positifs, et fut associée de façon indépendante au risque de progression. La surexpression de l’enzyme fut également associée à des niveaux circulants de testostérone (T) et dihydrotestostérone (DHT) plus élevés. Les patients n’exprimant pas le gène UGT2B28 avaient des niveaux plus bas de T (19%), de DHT (17%), de métabolites glucuronidés (18-38%), et des niveaux plus élevés du précurseur surrénalien androsténédione (36%). Conclusion : L’enzyme UGT2B28 modifie les niveaux circulants de T et DHT, et sa surexpression est associée avec un CaP à plus haut grade. Notre étude a permis de découvrir un nouveau rôle d’UGT2B28, celui de régulateur de la stéroïdogenèse, et a souligné l’interconnexion entre les capacités de biotransformation hormonale des cellules cancéreuses, des niveaux hormonaux, des caractéristiques clinicopathologiques et du risque de progression.
Resumo:
Substantial variation exists in response to standard doses of codeine ranging from poor analgesia to life-threatening central nervous system (CNS) depression. We aimed to discover the genetic markers predictive of codeine toxicity by evaluating the associations between polymorphisms in cytochrome P450 2D6 (CYP2D6), UDP-glucuronosyltransferase 2B7 (UGT2B7), P-glycoprotein (ABCB1), mu-opioid receptor (OPRM1), and catechol O-methyltransferase (COMT) genes, which are involved in the codeine pathway, and the symptoms of CNS depression in 111 breastfeeding mothers using codeine and their infants. A genetic model combining the maternal risk genotypes in CYP2D6 and ABCB1 was significantly associated with the adverse outcomes in infants (odds ratio (OR) 2.68; 95% confidence interval (CI) 1.61-4.48; P(trend) = 0.0002) and their mothers (OR 2.74; 95% CI 1.55-4.84; P(trend) = 0.0005). A novel combination of the genetic and clinical factors predicted 87% of the infant and maternal CNS depression cases with a sensitivity of 80% and a specificity of 87%. Genetic markers can be used to improve the outcome of codeine therapy and are also probably important for other opioids sharing common biotransformation pathways.
Resumo:
BACKGROUND: Unconjugated hyperbilirubinemia results from Gilbert syndrome and from antiretroviral therapy (ART) containing protease inhibitors. An understanding of the interaction between genetic predisposition and ART may help to identify individuals at highest risk for developing jaundice. METHODS: We quantified the contribution of UGT1A1*28 and ART to hyperbilirubinemia by longitudinally modeling 1386 total bilirubin levels in 96 human immunodeficiency virus (HIV)-infected individuals during a median of 6 years. RESULTS: The estimated average bilirubin level was 8.8 micromol/L (0.51 mg/dL). Atazanavir increased bilirubin levels by 15 mu mol/L (0.87 mg/dL), and indinavir increased bilirubin levels by 8 micromol/L (0.46 mg/dL). Ritonavir, lopinavir, saquinavir, and nelfinavir had no or minimal effect on bilirubin levels. Homozygous UGT1A1*28 increased bilirubin levels by 5.2 micromol/L (0.3 mg/dL). As a consequence, 67% of individuals homozygous for UGT1A1*28 and receiving atazanavir or indinavir had > or =2 episodes of hyperbilirubinemia in the jaundice range (>43 micromol/L [>2.5 mg/dL]), versus 7% of those with the common allele and not receiving either of those protease inhibitors (P<.001). Efavirenz resulted in decreased bilirubin levels, which is consistent with the induction of UDP-glucuronosyltransferase 1A1. CONCLUSIONS: Genotyping for UGT1A1*28 before initiation of ART would identify HIV-infected individuals at risk for hyperbilirubinemia and decrease episodes of jaundice.
Resumo:
Studies were performed to investigate the UDP-glucuronosyltransferase enzyme( s) responsible for the human liver microsomal N2-glucuronidation of the anticonvulsant drug lamotrigine ( LTG) and the mechanistic basis for the LTG-valproic acid ( VPA) interaction in vivo. LTG N2-glucuronidation by microsomes from five livers exhibited atypical kinetics, best described by a model comprising the expressions for the Hill ( 1869 +/- 1286 mu M, n = 0.65 +/- 0.16) and Michaelis-Menten ( Km 2234 +/- 774 mu M) equations. The UGT1A4 inhibitor hecogenin abolished the Michaelis-Menten component, without affecting the Hill component. LTG N2-glucuronidation by recombinant UGT1A4 exhibited Michaelis-Menten kinetics, with a K-m of 1558 mu M. Although recombinant UGT2B7 exhibited only low activity toward LTG, inhibition by zidovudine and fluconazole and activation by bovine serum albumin ( BSA) ( 2%) strongly suggested that this enzyme was responsible for the Hill component of microsomal LTG N2-glucuronidation. VPA ( 10 mM) abolished the Hill component of microsomal LTG N2-glucuronidation, without affecting the Michaelis-Menten component or UGT1A4-catalyzed LTG metabolism. K-i values for inhibition of the Hill component of LTG N2-glucuronidation by VPA were 2465 +/- 370 mu M and 387 +/- 12 mu M in the absence and presence, respectively, of BSA ( 2%). Consistent with published data for the effect of fluconazole on zidovudine glucuronidation by human liver microsomal UGT2B7, the Ki value generated in the presence of BSA predicted the magnitude of the LTG-VPA interaction reported in vivo. These data indicate that UGT2B7 and UGT1A4 are responsible for the Hill and Michaelis-Menten components, respectively, of microsomal LTG N2-glucuronidation, and the LTG-VPA interaction in vivo arises from inhibition of UGT2B7.
Resumo:
Dapsone (DDS) is currently used in the treatment of leprosy, malaria and in infections with Pneumocystis jirovecii and Toxoplasma gondii in AIDS patients. Adverse effects of DDS involve methemoglobinemia and hemolysis and, to a lower extent, liver damage, though the mechanism is poorly characterized. We evaluated the effect of DDS administration to male and female rats (30 mg/kg body wt, twice a day, for 4 days) on liver oxidative stress through assessment of biliary output and liver content of reduced (GSH) and oxidized (GSSG) glutathione, lipid peroxidation, and expression/activities of the main antioxidant enzymes glutathione peroxidase, superoxide dismutase, catalase and glutathione S-transferase. The influence of DDS treatment on express ion/activity of the main DDS phase-II- metabolizing system, UDP-glucuronosyltransferase (UGT), was additionally evaluated. The involvement of dapsone hydroxylamine (DDS-NHOH) generation in these processes was estimated by comparing the data in male and female rats since N-hydroxylation of DDS mainly occurs in males. Our studies revealed an increase in the GSSG/GSH biliary output ratio, a sensitive indicator of oxidative stress, and in lipid peroxiclation, in male but not in female rats treated with DDS. The activity of all antioxidant enzymes was significantly impaired by DDS treatment also in male rats, whereas UGT activity was not affected in any sex. Taken together, the evidence indicates that DDS induces oxidative stress in rat liver and that N-hydroxylation of DDS was the likely mediator. Impairment in the activity of enzymatic antioxidant systems, also associated with DDS-NHOH formation, constituted a key aggravating factor.
Resumo:
The coffee components kahweol and cafestol (K/C) have been reported to protect the colon and other organs of the rat against the formation of DNA adducts by 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) and aflatoxin B1. PhIP is a cooked-food mutagen to which significant human exposure and a role in colon cancer etiology are attributed, and, interestingly, such cancers appear to develop at a lower rate in consumers of coffees with high amounts of K/C. Earlier studies in rodent liver have shown that a key role in the chemopreventive effect of K/C is likely to be due to the potential of these compounds to induce the detoxification of xenobiotics by glutathione transferase (GST) and to enhance the synthesis of the corresponding co-factor glutathione. However, mutagens like PhIP may also be detoxified by UDP-glucuronosyl transferase (UDPGT) for which data are lacking regarding a potential effect of K/C. Therefore, in the present study, we investigated the effect of K/C on UDPGT and, concomitantly, we studied overall GST and the pattern of individual GST classes, particularly GST-θ, which was not included in earlier experiments. In addition, we analyzed the organ-dependence of these potentially chemopreventive effects. K/C was fed to male F344 rats at 0.122% in the chow for 10 days. Enzyme activities in liver, kidney, lung, colon, salivary gland, pancreas, testis, heart and spleen were quantified using five characteristic substrates and the hepatic protein pattern of GST classes α, μ, and π was studied with affnity chromatography/HPLC. Our study showed that K/C is not only capable of increasing overall GST and GST classes α, μ, and π but also of enhancing UDGPT and GST-θ. All investigated K/C effects were strongest in liver and kidney, and some response was seen in lung and colon but none in the other organs. In summary, our results show that K/C treatment leads to a wide spectrum of increases in phase II detoxification enzymes. Notably, these effects occurred preferentially in the well perfused organs liver and kidney, which may thus not only contribute to local protection but also to anti-carcinogenesis in distant, less stimulated organs such as the colon.
Resumo:
Resumo:
The enzyme UDP-galactose-4-epimerase (GAL10) catalyzes a key step in galactose metabolism converting UDP-galactose to UDPglucose which then can get metabolized through glycolysis and TCA cycle thus allowing the cell to use galactose as a carbon and energy source. As in many fungi, a functional homolog of GAL10 exists in Candida albicans. The domainal organization of the homologs from Saccharomyces cerevisiae and C albicans show high degree of homology having both mutarotase and an epimerase domain. The former is responsible for the conversion of beta-D-galactose to alpha-D-galactose and the hitter for epimerization of UDP-galactose to UDP-glucose. Absence of C albicans GAL10 (CaGAL10) affects cell-wall organization, oxidative stress response, biofilm formation and filamentation. Cagal10 mutant cells tend to flocculate extensively as compared to the wild-type cells. The excessive filamentation in this mutant is reflected in its irregular and wrinkled colony morphology. Cagal10 strain is more susceptible to oxidative stress when tested in presence of H2O2. While the S. cerevsiae GAL10 (ScGAL10), essential for survival in the presence of galactose, has not been reported to have defects in the absence of galactose, the C albicans homolog shows these phenotypes during growth in the absence of galactose. Thus a functional CaGal10 is required not only for galactose metabolism but also for normal hyphal morphogenesis, colony morphology, maintenance of cell-wall integrity and for resistance to oxidative stress even in the absence of galactose. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Sulfotransferases (SULTs) and UDP-glucuronosyltransferases (UGTs) are important detoxification enzymes and they contribute to bioavailability and elimination of many drugs. SULT1A3 is an extrahepatic enzyme responsible for the sulfonation of dopamine, which is often used as its probe substrate. A new method for analyzing dopamine-3-O-sulfate and dopamine-4-O-sulfate by high-performance liquid chromatography was developed and the enzyme kinetic parameters for their formation were determined using purified recombinant human SULT1A3. The results show that SULT1A3 strongly favors the 3-hydroxy group of dopamine, which indicates that it may be the major enzyme responsible for the difference between the circulating levels of dopamine sulfates in human blood. All 19 known human UGTs were expressed as recombinant enzymes in baculovirus infected insect cells and their activities toward dopamine and estradiol were studied. UGT1A10 was identified as the only UGT capable of dopamine glucuronidation at a substantial level. The results were supported by studies with human intestinal and liver microsomes. The affinity was low indicating that UGT1A10 is not an important enzyme in dopamine metabolism in vivo. Despite the low affinity, dopamine is a potential new probe substrate for UGT1A10 due to its selectivity. Dopamine was used to study the importance of phenylalanines 90 and 93 in UGT1A10. The results revealed distinct effects that are dependent on differences in the size of the side chain and on the differences in their position within the protein. Examination of twelve mutants revealed lower activity in all of them. However, the enzyme kinetic studies of four mutants showed that their affinities were similar to that of UGT1A10 suggesting that F90 and F93 are not directly involved in dopamine binding in the active site. The glucuronidation of β-estradiol and epiestradiol (α-estradiol) was studied to elucidate how the orientation of the 17-OH group affects conjugation at the 3-OH or the 17-OH of either diastereomer. The results show that there are clear differences in the regio- and stereoselectivities of UGTs. The most active isoforms were UGT1A10 and UGT2B7 demonstrating opposite regioselectivity. The stereoselectivities of UGT2Bs were more complex than those of UGT1As. The amino acid sequences of the human UGTs 1A9 and 1A10 are 93% identical, yet there are large differences in their activity and substrate selectivity. Several mutants were constructed to identify the residues responsible for the activity differences. The results revealed that the residues between Leu86 and Tyr176 of UGT1A9 determine the differences between UGT1A9 and UGT1A10. Phe117 of UGT1A9 participated in 1-naphthol binding and the residues at positions 152 and 169 contributed to the higher glucuronidation rates of UGT1A10. In summary, the results emphasize that the substrate selectivities, including regio- and stereoselectivities, of UGTs are complex and they are controlled by many amino acids rather than one critical residue.
Resumo:
Candida albicans, a human fungal pathogen, undergoes morphogenetic changes that are associated with virulence. We report here that GAL102 in C. albicans encodes a homolog of dTDP-glucose 4,6-dehydratase, an enzyme that affects cell wall properties as well as virulence of many pathogenic bacteria. We found that GAL102 deletion leads to greater sensitivity to antifungal drugs and cell wall destabilizing agents like Calcofluor white and Congo red. The mutant also formed biofilms consisting mainly of hyphal cells that show less turgor. The NMR analysis of cell wall mannans of gal102 deletion strain revealed that a major constituent of mannan is missing and the phosphomannan component known to affect virulence is greatly reduced. We also observed that there was a substantial reduction in the expression of genes involved in biofilm formation but increase in the expression of genes encoding glycosylphosphatidylinositol-anchored proteins in the mutant. These, along with altered mannosylation of cell wall proteins together might be responsible for multiple phenotypes displayed by the mutant. Finally, the mutant was unable to grow in the presence of resident peritoneal macrophages and elicited a weak pro-inflammatory cytokine response in vitro. Similarly, this mutant elicited a poor serum pro-inflammatory cytokine response as judged by IFN gamma and TNF alpha levels and showed reduced virulence in a mouse model of systemic candidiasis. Importantly, an Ala substitution for a conserved Lys residue in the active site motif YXXXK, that abrogates the enzyme activity also showed reduced virulence and increased filamentation similar to the gal102 deletion strain. Since inactivating the enzyme encoded by GAL102 makes the cells sensitive to antifungal drugs and reduces its virulence, it can serve as a potential drug target in combination therapies for C. albicans and related pathogens.