939 resultados para Two-dimensional cutting problem
Resumo:
We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rotations are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) problem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by Beasley; the second algorithm - for staged patterns - also uses a recurrence formula. We show that if the items are not so small compared to the dimensions of the bin, then these algorithms require polynomial time. Using these algorithms we solved all instances of the RK problem found at the OR-LIBRARY, including one for which no optimal solution was known. We also consider the Two-dimensional Cutting Stock problem. We present a column generation based algorithm for this problem that uses the first algorithm above mentioned to generate the columns. We propose two strategies to tackle the residual instances. We also investigate a variant of this problem where the bins have different sizes. At last, we study the Two-dimensional Strip Packing problem. We also present a column generation based algorithm for this problem that uses the second algorithm above mentioned where staged patterns are imposed. In this case we solve instances for two-, three- and four-staged patterns. We report on some computational experiments with the various algorithms we propose in this paper. The results indicate that these algorithms seem to be suitable for solving real-world instances. We give a detailed description (a pseudo-code) of all the algorithms presented here, so that the reader may easily implement these algorithms. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this article we explore the so-called two-dimensional tree− search problem. We prove that for integers m of the form m = (2^(st) − 1)/(2^s − 1) the rectangles A(m, n) are all tight, no matter what n is. On the other hand, we prove that there exist infinitely many integers m for which there is an infinite number of n’s such that A(m, n) is loose. Furthermore, we determine the smallest loose rectangle as well as the smallest loose square (A(181, 181)). It is still undecided whether there exist infinitely many loose squares.
Resumo:
Objectives and study method: The objective of this study is to develop exact algorithms that can be used as management tools for the agricultural production planning and to obtain exact solutions for two of the most well known twodimensional packing problems: the strip packing problem and the bin packing problem. For the agricultural production planning problem we propose a new hierarchical scheme of three stages to improve the current agricultural practices. The objective of the first stage is to delineate rectangular and homogeneous management zones into the farmer’s plots considering the physical and chemical soil properties. This is an important task because the soil properties directly affect the agricultural production planning. The methodology for this stage is based on a new method called “Positions and Covering” that first generates all the possible positions in which the plot can be delineated. Then, we use a mathematical model of linear programming to obtain the optimal physical and chemical management zone delineation of the plot. In the second stage the objective is to determine the optimal crop pattern that maximizes the farmer’s profit taken into account the previous management zones delineation. In this case, the crop pattern is affected by both management zones delineation, physical and chemical. A mixed integer linear programming is used to solve this stage. The objective of the last stage is to determine in real-time the amount of water to irrigate in each crop. This stage takes as input the solution of the crop planning stage, the atmospheric conditions (temperature, radiation, etc.), the humidity level in plots, and the physical management zones of plots, just to name a few. This procedure is made in real-time during each irrigation period. A linear programming is used to solve this problem. A breakthrough happen when we realize that we could propose some adaptations of the P&C methodology to obtain optimal solutions for the two-dimensional packing problem and the strip packing. We empirically show that our methodologies are efficient on instances based on real data for both problems: agricultural and two-dimensional packing problems. Contributions and conclusions: The exact algorithms showed in this study can be used in the making-decision support for agricultural planning and twodimensional packing problems. For the agricultural planning problem, we show that the implementation of the new hierarchical approach can improve the farmer profit between 5.27% until 8.21% through the optimization of the natural resources. An important characteristic of this problem is that the soil properties (physical and chemical) and the real-time factors (climate, humidity level, evapotranspiration, etc.) are incorporated. With respect to the two-dimensional packing problems, one of the main contributions of this study is the fact that we have demonstrate that many of the best solutions founded in literature by others approaches (heuristics approaches) are the optimal solutions. This is very important because some of these solutions were up to now not guarantee to be the optimal solutions.
Resumo:
O presente trabalho visa denotar a importância de ferramentas e técnicas utilizadas como apoio à tomada de decisão. Foi proposto um problema de corte cujo objectivo primordial procura minimizar o desperdício gerado resultante do processo de obtenção de um produto, utilizando um caso representativo de um produto em chapa, fabricado por uma empresa que conta três décadas de laboração contínua, proposeram-se e realizaram-se estudos no sentido de solucionar recursos causadores de desperdício. Neste trabalho aplicou-se um problema de corte bi-dimensional a uma indústria que recorre ao fabrico de produtos em chapa, por forma a minimizar o desperdício relativo ao processo utilizado. Propôs-se quatro alternativas à solução actual realizada na empresa, que passa pela disposição e combinação de vários tipos de cortes-padrão que podem ser executados nas diferentes dimensões de matéria-prima disponibilizada. Estas alternativas têm como vantagem apresentar reduções que se traduzam significativas para os custos implícitos à realização do processo produtivo. Os estudos computacionais praticados mostraram que as soluções propostas como alternativa obtiveram melhores resultados que os obtidos pela empresa, excepto num caso.
Resumo:
O problema tratado neste trabalho consiste em cortar uma placa retangular em peças menores retangulares, de modo que a perda seja minimizada. A placa, entretanto, contém defeitos bem localizados. Propomos uma abordagem em grafo E/OU para representação das soluções possíveis e um método de enumeração implícita para determinar a solução ótima. Resultados computacionais demonstram a efetividade da abordagem.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study, a dynamic programming approach to deal with the unconstrained two-dimensional non-guillotine cutting problem is presented. The method extends the recently introduced recursive partitioning approach for the manufacturer's pallet loading problem. The approach involves two phases and uses bounds based on unconstrained two-staged and non-staged guillotine cutting. The method is able to find the optimal cutting pattern of a large number of pro blem instances of moderate sizes known in the literature and a counterexample for which the approach fails to find known optimal solutions was not found. For the instances that the required computer runtime is excessive, the approach is combined with simple heuristics to reduce its running time. Detailed numerical experiments show the reliability of the method. Journal of the Operational Research Society (2012) 63, 183-200. doi: 10.1057/jors.2011.6 Published online 17 August 2011
Resumo:
Solutions of a two-dimensional dam break problem are presented for two tailwater/reservoir height ratios. The numerical scheme used is an extension of one previously given by the author [J. Hyd. Res. 26(3), 293–306 (1988)], and is based on numerical characteristic decomposition. Thus approximate solutions are obtained via linearised problems, and the method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids non-physical, spurious oscillations.
Resumo:
This paper deals with the classical one-dimensional integer cutting stock problem, which consists of cutting a set of available stock lengths in order to produce smaller ordered items. This process is carried out in order to optimize a given objective function (e.g., minimizing waste). Our study deals with a case in which there are several stock lengths available in limited quantities. Moreover, we have focused on problems of low demand. Some heuristic methods are proposed in order to obtain an integer solution and compared with others. The heuristic methods are empirically analyzed by solving a set of randomly generated instances and a set of instances from the literature. Concerning the latter. most of the optimal solutions of these instances are known, therefore it was possible to compare the solutions. The proposed methods presented very small objective function value gaps. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We consider a one-dimensional cutting stock problem in which the material not used in the cutting patterns, if large enough, is kept for use in the future. Moreover, it is assumed that leftovers should not remain in stock for a long time, hence, such leftovers have priority-in-use compared to standard objects (objects bought by the industry) in stock. A heuristic procedure is proposed for this problem, and its performance is analyzed by solving randomly generated dynamic instances where successive problems are solved in a time horizon. For each period, new demands arise and a new problem is solved on the basis of the information about the stock of the previous periods (remaining standard objects in the stock) and usable leftovers generated during those previous periods. The computational experiments show that the solutions presented by the proposed heuristic are better than the solutions obtained by other heuristics from the literature. © 2012 The Authors. International Transactions in Operational Research © 2012 International Federation of Operational Research Societies.
Resumo:
This work studies the integrated lot sizing and cutting stock problem, where the goal is to capture the dependency that exists between two important decisions in the production process, in order to economize raw materials and also reduce production and inventory costs. The integrated lot sizing and cutting stock problem is studied in a small furniture factory that produces wardrobes, dressing tables and cupboards and the lot sizing and cutting stock decisions are taken by the production manager. A column-generation technique is used to solve a linear relaxation of the proposed model. The computational results, using real data from the factory, show that it is possible to reduce total inventory and raw material costs when integrated planning is used. © 2013 IFAC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This thesis proposes a solution for board cutting in the wood industry with the aim of usage minimization and machine productivity. The problem is dealt with as a Two-Dimensional Cutting Stock Problem and specific Combinatorial Optimization methods are used to solve it considering the features of the real problem.
Resumo:
This thesis, after presenting recent advances obtained for the two-dimensional bin packing problem, focuses on the case where guillotine restrictions are imposed. A mathematical characterization of non-guillotine patterns is provided and the relation between the solution value of the two-dimensional problem with guillotine restrictions and the two-dimensional problem unrestricted is being studied from a worst-case perspective. Finally it presents a new heuristic algorithm, for the two-dimensional problem with guillotine restrictions, based on partial enumeration, and computationally evaluates its performance on a large set of instances from the literature. Computational experiments show that the algorithm is able to produce proven optimal solutions for a large number of problems, and gives a tight approximation of the optimum in the remaining cases.