913 resultados para Tumors in animals.
Resumo:
The etiology of brain tumors in children and adolescents is largely unknown, and very few environmental risk factors have been identified. The aim of this study was to examine the relationship between pre- or postnatal animal contacts or farm exposures and the risk of childhood brain tumors (CBTs), since infectious agents may pose a risk factor and a proposed mechanism is transferral of infectious agents from animals to humans.
Resumo:
Uniform DNA distribution in tumors is a prerequisite step for high transfection efficiency in solid tumors. To improve the transfection efficiency of electrically assisted gene delivery to solid tumors in vivo, we explored how tumor histological properties affected transfection efficiency. In four different tumor types (B16F1, EAT, SA-1 and LPB), proteoglycan and collagen content was morphometrically analyzed, and cell size and cell density were determined in paraffin-embedded tumor sections under a transmission microscope. To demonstrate the influence of the histological properties of solid tumors on electrically assisted gene delivery, the correlation between histological properties and transfection efficiency with regard to the time interval between DNA injection and electroporation was determined. Our data demonstrate that soft tumors with larger spherical cells, low proteoglycan and collagen content, and low cell density are more effectively transfected (B16F1 and EAT) than rigid tumors with high proteoglycan and collagen content, small spindle-shaped cells and high cell density (LPB and SA-1). Furthermore, an optimal time interval for increased transfection exists only in soft tumors, this being in the range of 5-15 min. Therefore, knowledge about the histology of tumors is important in planning electrogene therapy with respect to the time interval between DNA injection and electroporation.
Resumo:
PURPOSE:To assess whether late introduction of a specific COX-2 inhibitor (Meloxicam) can treat and/or prevent the progression of tumors in the stomach of rats submitted to duodenogastric reflux. METHODS: Seventy five male Wistar rats, weighing 150 grams, were submitted to the induction of duodenogastric reflux through the pylorus. At 36 weeks of follow-up were established three experimental groups: DGR36 sacrificed immediately, DGR54 and DGR54MLX both sacrificed at 54th week of follow-up . The animals of the latter group were fed with a rat chow premixed with Meloxicam (2.0 mg/ kg feed; 0.3 mg / kg bw / day) and the other two with standard rat chow. The lesions found in the pyloric mucosa and gastrojejunal anastomosis were analyzed macroscopically and histologically. For statistical analysis was adjusted a generalized linear model assuming a binomial distribution with LOGIT link function. RESULTS: No significant differences were found when comparing the incidences of benign tumor lesions (Adenomatous Hyperplasia), p=0.4915, or malignant (Mucinous Adenocarcinoma), p=0.2731, among groups. CONCLUSION: Late introduction of specific COX-2 inhibitor (Meloxicam) did not treat and was not able to prevent the progression of tumoral lesions induced by duodenogastric reflux in the rat stomachs.
Resumo:
Background: Ginkgo biloba extract (GbE) is used extensively by breast cancer patients undergoing treatment with Tamoxifen (TAM). Thus, the present study investigated the effects of GbE in female Sprague-Dawley (SD) rats bearing chemically-induced mammary tumors and receiving TAM.Methods: Animals bearing mammary tumors (≥1 cm in diameter) were divided into four groups: TAM [10 mg/kg, intragastrically (i.g.)], TAM plus GbE [50 and 100 mg/kg, intraperitoneally (i.p.)] or an untreated control group. After 4 weeks, the therapeutic efficacy of the different treatments was evaluated by measuring the tumor volume (cm3) and the proportions of each tumor that were alive, necrotic or degenerative (mm2). In addition, labeling indexes (LI%) were calculated for cell proliferation (PCNA LI%) and apoptosis (cleaved caspase-3 LI%), expression of estrogen receptor-alpha (ER-α) and p63 biomarkers.Results: Overall, the tumor volume and the PCNA LI% within live tumor areas were reduced by 83% and 99%, respectively, in all TAM-treated groups when compared to the untreated control group. GbE treatment (100 mg/kg) reduced the proportions of live (24.8%) and necrotic areas (2.9%) (p = 0.046 and p = 0.038, respectively) and significantly increased the proportion of degenerative areas (72.9%) (p = 0.004) in mammary tumors when compared to the group treated only with TAM. The expression of ER-α, p63 and cleaved caspase-3 in live tumor tissues was not modified by GbE treatment.Conclusions: Co-treatment with 100 mg/kg GbE presented a slightly beneficial effect on the therapeutic efficacy of TAM in female SD rats bearing mammary tumors. © 2013 Dias et al.; licensee BioMed Central Ltd.
Resumo:
Recent claims of equivalence of animal and human reasoning are evaluated and a study of avian cognition serves as an exemplar of weaknesses in these arguments. It is argued that current research into neurobiological cognition lacks theoretical breadth to substantiate comparative analyses of cognitive function. Evaluation of a greater range of theoretical explanations is needed to verify claims of equivalence in animal and human cognition. We conclude by exemplifying how the notion of affordances in multi-scale dynamics can capture behavior attributed to processes of analogical and inferential reasoning in animals and humans.
Resumo:
Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of diseases. Since the first isolation of C. pneumoniae TWAR in 1965, all human isolates have been essentially clonal, providing little evolutionary insight. To address this gap, we investigated the genetic diversity of 30 isolates from diverse geographical locations, from both human and animal origin (amphibian, reptilian, equine and marsupial). Based on the level of variation that we observed at 23 discreet gene loci, it was clearly evident that the animal isolates were more diverse than the isolates of human origin. Furthermore, we show that C. pneumoniae isolates could be grouped into five major genotypes, A-E, with A, B, D and E genotypes linked by geographical location, whereas genotype C was found across multiple continents. Our evidence strongly supports two separate animal-to-human cross species transfer events in the evolutionary history of this pathogen. The C. pneumoniae human genotype identified in the USA, Canada, Taiwan, Iran, Japan, Korea and Australia (non- Indigenous) most likely originated from a single amphibian or reptilian lineage, which appears to have been previously geographically widespread. We identified a separate human lineage present in two Australian Indigenous isolates (independent geographical locations). This lineage is distinct and is present in Australian amphibians as well as a range of Australian marsupials.
Resumo:
We have investigated the role of bone sialoprotein (BSP), a secreted glycoprotein normally found in bone, in breast cancer progression. To explore functions for BSP in human breast cancer invasion and metastasis, the full-length BSP cDNA was transfected into the MDA-MB-231-BAG human breast cancer cell line under the control of the CMV promoter. Clones expressing BSP and vector control clones were isolated. BSP producing clones showed increased monolayer wound healing, a faster rate of stellate outgrowth in Matrigel and increased rate of invasion into a collagen matrix when compared to control clones. Clones were also examined in models of breast cancer growth and metastasis in vivo. BSP transfected clones showed an increased rate of primary tumor growth following mammary fat pad injection of nude mice. BSP transfected clones and vector control clones metastasized to soft organs and bone at a similar rate after intra-cardiac injection as determined by real-time PCR and X-ray analysis. Although these organs were targets for both BSP transfected and non-transfected cells, the size of the metastatic lesion was shown to be significantly larger for BSP expressing clones. This was determined by real-time PCR analysis for soft organs and by X-ray analysis of bone lesions. For bone this was confirmed by intra-tibial injections of cells in nude mice. We conclude that BSP acts to drive primary and secondary tumor growth of breast cancers in vivo.
Resumo:
Human ovarian carcinoma samples were orthotopically implanted into SCID mice to investigate the contribution of matrix metalloproteases (MMPs) to the spread of ovarian tumors. Mice were inoculated with patient tumor samples, and developed ovarian tumors over a 16-week period with metastasis occurring in some mice. Species-specific quantitative RT-PCR was used to identify the source of tumor-associated MMPs. Membrane-type (MT)1-MMP mRNA was significantly increased in high-grade tumors, tumors with evidence of serosal involvement, and tumors in which distant metastases were detected. The increase in MT1-MMP expression was predominantly from the human tumor cells, with a minor contribution from the mouse ovarian stroma. Neither human nor mouse MT2-MMP were correlated with tumor progression and MT3-MMP levels were negligible. While tumor cells did not produce significant amounts of MMP-2 or MMP-9, the presence of tumor was associated with increased levels of MMP-2 expression by mouse ovarian stroma. Stromal-derived MT1-MMP was greater in large tumors and was associated with stromal MMP-2 expression but neither was significantly linked with metastasis. These studies indicate that tumor-derived MT1-MMP, more so than other gelatinolytic MMPs, is strongly linked to aggressive tumor behavior. This orthotopic model of human ovarian carcinoma is appropriate for studying ovarian tumor progression, and will be valuable in the further investigation of the metastatic process.
Resumo:
Between 1984 and 1997, six cases of urothelial cancer and 14 cases of renal cell cancer occurred in a group of 500 underground mining workers in the copper-mining industry of the former German Democratic Republic, with high exposures to explosives containing technical dinitrotoluene. Exposure durations ranged from 7 to 37 years, and latency periods ranged from 21 to 46 years. The incidences of both urothelial and renal cell tumors in this group were much higher than anticipated on the basis of the cancer registers of the German Democratic Republic by factors of 4.5 and 14.3, respectively. The cancer cases and a representative group of 183 formerly dinitrotoluene- exposed miners of this local industry were interviewed for their working history and grouped into four exposure categories. This categorization of the 14 renal cell tumor cases revealed no dose-dependency concerning explosives in any of the four exposure categories and was similar to that of the representative group of employees, whereas the urothelial tumor cases were predominantly confined to the high-exposure categories. Furthermore, all identified tumor patients were genotyped by polymerase chain reaction, using lymphocyte DNA, regarding their genetic status of the polymorphic xenobiotic metabolizing enzymes, including the N-acetyltransferase 2 and the glutathione-S-transferases M1 and T1. This genotyping revealed remarkable distributions only for the urothelial tumor cases, who were exclusively identified as 'slow acetylators.' This points to the possibility of human carcinogenicity of dinitrotoluene, with regard to the urothelium as the target tissue.
Resumo:
We develop a hybrid cellular automata model to describe the effect of the immune system and chemokines on a growing tumor. The hybrid cellular automata model consists of partial differential equations to model chemokine concentrations, and discrete cellular automata to model cell–cell interactions and changes. The computational implementation overlays these two components on the same spatial region. We present representative simulations of the model and show that increasing the number of immature dendritic cells (DCs) in the domain causes a decrease in the number of tumor cells. This result strongly supports the hypothesis that DCs can be used as a cancer treatment. Furthermore, we also use the hybrid cellular automata model to investigate the growth of a tumor in a number of computational “cancer patients.” Using these virtual patients, the model can explain that increasing the number of DCs in the domain causes longer “survival.” Not surprisingly, the model also reflects the fact that the parameter related to tumor division rate plays an important role in tumor metastasis.
Resumo:
Increased permeability of blood vessels is an indicator for various injuries and diseases, including multiple sclerosis (MS), of the central nervous system. Nanoparticles have the potential to deliver drugs locally to sites of tissue damage, reducing the drug administered and limiting associated side effects, but efficient accumulation still remains a challenge. We developed peptide-functionalized polymeric nanoparticles to target blood clots and the extracellular matrix molecule nidogen, which are associated with areas of tissue damage. Using the induction of experimental autoimmune encephalomyelitis in rats to provide a model of MS associated with tissue damage and blood vessel lesions, all targeted nanoparticles were delivered systemically. In vivo data demonstrates enhanced accumulation of peptide functionalized nanoparticles at the injury site compared to scrambled and naive controls, particularly for nanoparticles functionalized to target fibrin clots. This suggests that further investigations with drug laden, peptide functionalized nanoparticles might be of particular interest in the development of treatment strategies for MS.
Resumo:
Fractionation of methanolic extracts of air dried aerial parts ofParthenium resulted in the isolation of a toxic constituent which was identified as parthenin, the major sesquiterpene lactone from the weed. The LD50 (minimal lethal dose required to cause 50% mortality) for parthenin in rats was 42 mg/kg body weight. When [3H]-parthenin was given orally or by intravenous administration, radioactivity appeared in the milk of lactating laboratory and dairy animals. Tissue distribution of radioactivity revealed that maximum label was detectable in kidneys.
Resumo:
Multidrug-resistant Escherichia colt sequence type 131 (51131) has recently emerged as a globally distributed cause of extraintestinal infections in humans. Diverse factors have been investigated as explanations for ST131's rapid and successful dissemination, including transmission through animal contact and consumption of food, as suggested by the detection of ST131 in a number of nonhuman species. For example, ST131 has recently been identified as a cause of clinical infection in companion animals and poultry, and both host groups have been confirmed as faecal carriers of ST131. Moreover, a high degree of similarity has been shown among certain ST131 isolates from humans, companion animals, and poultry based on resistance characteristics and genomic background and human and companion animal ST131 isolates tend to exhibit similar virulence genotypes. However, most ST131 isolates from poultry appear to possess specific virulence genes that are typically absent from human and companion animal isolates, including genes associated with avian pathogenic E. coli. Since the number of reported animal and food-associated ST131 isolates is quite small, the role of nonhuman host species in the emergence, dissemination, and transmission of ST131 to humans remains unclear. Nevertheless, given the profound public health importance of the emergent ST131 clonal group, even the limited available evidence indicates a pressing need for further careful study of this significant question.
Resumo:
After ensilation, the toxic Compositae weed Parthenium hysterophorus was devoid of the toxic principle parthenin. Laboratory-scale ensilation indicated that no parthenin was detectable after 5 wk of anaerobic fermentation. For animal feeding studies, silage was made on a large scale from Parthenium mixed with maize or from Parthenium alone. Crossbred bull and buffalo bull calves were fed diets containing the silages, or control diet without silage, for 12 wk. The animals consumed both silages with relish, and body weight gains of silage-fed calves did not differ from those of the controls. The digestibilities of dry matter, fibre and nitrogen-free extract were greater with the control diet, but the biological value of proteins tended to be greater with the silage-containing diets. Haematological studies indicated no significant differences between experimental and control groups in selected parameters, except for a reduction in blood urea nitrogen in the animals fed silage. The possible causes for these biochemical alterations are discussed. Since the nutritive value of Parthenium silage compares favourably with the standard diet, and Parthenium seeds collected from the silage did not germinate, we suggest that ensilation can be used as an additional method in the containment and eradication of these plants, which grow wild in India.