945 resultados para Tumor Suppressor Protein p53 -- biosynthesis
Resumo:
Functional loss of tumor suppressor protein p53 is a common feature in diverse human cancers. The ability of this protein to sense cellular damage and halt the progression of the cell cycle or direct the cells to apoptosis is essential in preventing tumorigenesis. Tumors having wild-type p53 also respond better to current chemotherapies. The loss of p53 function may arise from TP53 mutations or dysregulation of factors controlling its levels and activity. Probably the most significant inhibitor of p53 function is Mdm2, a protein mediating its degradation and inactivation. Clearly, the maintenance of a strictly controlled p53-Mdm2 route is of great importance in preventing neoplastic transformation. Moreover, impairing Mdm2 function could be a nongenotoxic way to increase p53 levels and activity. Understanding the precise molecular mechanisms behind p53-Mdm2 relationship is thus essential from a therapeutic point of view. The aim of this thesis study was to discover factors affecting the negative regulation of p53 by Mdm2, causing activation of p53 in stressed cells. As a model of cellular damage, we used UVC radiation, inducing a complex cellular stress pathway. Exposure to UVC, as well as to several chemotherapeutic drugs, causes robust transcriptional stress in the cells and leads to activation of p53. By using this model of cellular stress, our goal was to understand how and by which proteins p53 is regulated. Furthermore, we wanted to address whether these pathways affecting p53 function could be altered in human cancers. In the study, two different p53 pathway proteins, nucleophosmin (NPM) and promyelocytic leukemia protein (PML), were found to participate in the p53 stress response following UV stress. Subcellular translocations of these proteins were discovered rapidly after exposure to UV. The alterations in the cellular localizations were connected to transient interactions with p53 and Mdm2, implicating their significance in the regulation of p53 stress response. NPM was shown to control Mdm2-p53 interface and mediate p53 stabilization by blocking the ability of Mdm2 to promote p53 degradation. Furthermore, NPM mediated p53 stabilization upon viral insult. We further detected a connection between cellular pathways of NPM and PML, as PML was found to associate with NPM in UV-radiated cells. The observed temporal UV-induced interactions strongly imply existence of a multiprotein complex participating in the p53 response. In addition, PML controlled the UV response of NPM, its localization and complex formation with chromatin associated factors. The relevance of the UV-promoted interactions was demonstrated in studies in a human leukemia cell line, being under abnormal transcriptional repression due to expression of oncogenic PML-RARa fusion protein. Reversing the leukemic phenotype with a therapeutically significant drug was associated with similar complex formation between p53 and its partners as following UV. In conclusion, this thesis study identifies novel p53 pathway interactions associated with the recovery from UV-promoted as well as oncogenic transcriptional repression.
Resumo:
The p53 gene is a tumor suppressor gene that is commonly mutated in skin cancer and sun-exposed skin, and this can be detected through immunohistochemical expression of the p53 protein. The authors hypothesized that time spent outdoors is associated with p53 protein expression in human skin and that sunscreen use counteracts the association. In 1996, they investigated this in a community-based cross-sectional study in Australia. Detailed information about skin type, time spent outdoors, and sunscreen use was collected from 139 residents of a subtropical township who also provided a skin biopsy from the back of the hand for measurement of p53 expression. Increasing time spent outdoors was positively associated with immuno reactivity in the whole epidermis and in the basal layer of the epidermis. After adjustment for confounders, p53 immunoreactivity was twice as high for people who used sunscreen 1 or 2 days per week as for those who used sunscreen daily (whole epidermis: ratio estimate = 2.0, 95% confidence interval: 1.1, 3.6; basal layer: ratio estimate = 1.7, 95% confidence interval: 0.9, 3.1). The authors conclude that p53 immunoreactivity in the skin is a marker of exposure to ultraviolet light in the past 6 months, but this may be mitigated by regular application of sunscreen.
Resumo:
The tumor-suppressing function of p53 can be affected in a variety of manners. Here, we describe a novel mechanism of transformation by mutant p53. Previously, it had been believed that mutant p53 molecules transform cells by oligomerizing with wild-type p53 and inactivating it. However, we demonstrated that there exists an additional mechanism of inactivation of p53 available to p53 mutants. It involves sequestration of cofactors necessary to p53, and subsequent interruption of its transactivation and tumor suppression functions. The p53 amino or carboxyl termini, known to interact with a large number of cellular factors, can affect wild-type p53 in this manner. Although they are unable to oligomerize with wild-type p53, they transform cells containing p53, and inhibit its transactivation ability. In addition, they interrupt growth suppression by p53, but not RB, confirming that they specifically affect p53 function, rather than having a general growth-stimulatory phenomenon. Also, we have cloned a p53 tumor mutation which results in expression of the amino terminus of p53. This provides a means to study the factor-sequestration transforming mechanism in vivo. Additionally, we found that the published sequence of the mdm2 gene is in error. mdm2 is a gene intimately involved with p53, blocking its ability to transform cells. Finally, previous data had established the influence of cell-cycle status on p53 function. In growth-arrested cells, wild-type p53 expressed by a transgene cannot activate transcription, but if these cells are forced to cycle by addition of cyclin E, p53 once again becomes functional. In this study, we extend these findings by examining only those cells successfully transfected, using fluorescence-activated cell sorting. Our results support the previous data, that cyclin E pushes growth-arrested cells back into the cell cycle. In summary, we have demonstrated the potential importance of cofactor association and protein modification to the abilities of p53 to cause transcription activation and repression, inhibition of DNA replication and induction of DNA repair, and initiation of cell-cycle arrest and apoptosis. Further elucidation of these processes and their roles in tumor suppression will prove fascinating indeed. ^
Resumo:
Febs Journal (2009)276:1776-1786
Resumo:
Loss of antiproliferative function of p53 by point mutation occurred frequently in various solid tumors. However, the genetic change of p53 by deletion or point mutation was a rare event (6%) in the cells of 49 AML patients analyzed by single-stranded conformation polymorphism and sequencing. Despite infrequent point mutation, abundant levels of p53 protein were detected in 75% of AML patients studied by immunoprecipitation with p53 specific antibodies. Furthermore, p53 protein in most cases had an altered conformation as analyzed by the reactivity to PAb240 which recognizes mutant p53; p53 protein in mitogen stimulated normal lymphocytes also had similar altered conformation. This altered conformation may be another mechanism for inactivation of p53 function in the growth stimulated environment. Some evidence indicated that posttranslational modification by phosphorylation may contribute to the conformational change of p53.^ Retinoblastoma (Rb) gene inactivation by deletion, rearrangement or mutation has also been implicated in many types of solid tumors. Our studies showed that absence or low levels of Rb protein were observed in more than 20% of AML patients at diagnosis, and the low levels of Rb correlated with shorter survival of patients. The absence of Rb protein was due to gene inactivation in some cases and to abnormal regulation of Rb expression in others. ^
Resumo:
In the majority of cervical cancers, DNAs of high-risk mucosotpropic human papillomaviruses (HPVs), such as type 16, are maintained so as to express two viral proteins, E6 and E7, suggesting an essential importance to carcinogenesis. The high-risk HPV E6 proteins are known to inactivate p53 tumor suppressor protein but appear to have an additional, molecularly unknown function(s). In this study, we demonstrate that these E6 proteins can bind to the second PDZ domain of the human homologue of the Drosophila discs large tumor suppressor protein (hDLG) through their C-terminal XS/TXV/L (where X represents any amino acid, S/T serine or threonine, and V/L valine or leucine) motif. This finding is similar to the interaction between the adenomatous polyposis coli gene product and hDLG. E6 mutants losing the ability to bind to hDLG are no longer able to induce E6-dependent transformation of rodent cells. These results suggest an intriguing possibility that interaction between the E6 protein and hDLG or other PDZ domain-containing proteins could be an underlying mechanism in the development of HPV-associated cancers.
Resumo:
BACKGROUND: Breast cancer is a heterogeneous disease. Predictive biological markers (BM) of responsiveness to therapy need to be identified. Evaluation of BM is mainly done at the primary site. However, in the adjuvant therapy of breast cancer, the main goal is control of micrometastases. It is still unknown whether heterogeneity in the expression of BM between the primary site and its micrometastases exists. OBJECTIVE: To evaluate the expression of some BM with potential predictive value from the primary breast cancer site and metastatic ipsilateral axillary lymph nodes. PATIENTS AND METHODS: Focality (percentage of positive cells) and intensity staining scores were evaluated for each marker. Freshly cut sections (4 microm) from embedded blocks of breast cancer fixed in formalin or bouin were put onto superfrost slides (Menzel-Gläser). Protein expression was evaluated immunohistochemically (IHC) using monoclonal antibodies against: topo II-alpha (clone KiS1, 1 microg/ml, Roche) with a trypsine pre-treatment (P); HSP27 (clone G3.1, 1/60, Biogenex), HSP70 (clone BRM.22, 1/80, Biogenex) and HER2 (clone CB11, 1/40, Novocastra; without P); p53 (clone D07, 1/750, Dako) and bcl-2 (clone 124, 1/60, Dako) with citrate buffer as P. RESULTS: Overall, the percentage of discordant marker status in the primary tumour and its metastatic lymph nodes was 2% for HER2, 6% for p53, 15% for bcl-2, 19% for topoisomerase II-alpha, 24% for HSP27 and 30% for HSP70. For the subgroup of patients with positive BM in the primary tumour, the percentage of discordance was 6% for HER2, 7% for p53, 14% for bcl-2, 19% for HSP70, 21% for topoisomerase II-alpha and 36% for HSP27. For the subgroup of patients with positive BM in the lymph nodes, the percentage of discordance was 9% for bcl-2, 15% for HER2 and p53, 21% for topoisomerase II-alpha, 22% for HSP27 and 25% for HSP70. CONCLUSIONS: 1) No biological marker had 100% concordant results. 2) Although some discordant cases might be explained by the limitations of the IHC technique, future studies aiming to evaluate the predictive value of BM in the adjuvant therapy of breast cancer should take into account a possible difference in BM expression between the primary and the metastatic sites.
Resumo:
Cancer development results from deregulated control of stem cell populations and alterations in their surrounding environment. Notch signaling is an important form of direct cell-cell communication involved in cell fate determination, stem cell potential and lineage commitment. The biological function of this pathway is critically context dependent. Here we review the pro-differentiation role and tumor suppressing function of this pathway, as revealed by loss-of-function in keratinocytes and skin, downstream of p53 and in cross-connection with other determinants of stem cell potential and/or tumor formation, such as p63 and Rho/CDC42 effectors. The possibility that Notch signaling elicits a duality of signals, involved in growth/differentiation control and cell survival will be discussed, in the context of novel approaches for cancer therapy
Resumo:
Cyclin-dependent kinases (CDKs) successively phosphorylate the retinoblastoma protein (RB) at the restriction point in G1 phase. Hyperphosphorylation results in functional inactivation of RB, activation of the E2F transcriptional program, and entry of cells into S phase. RB unphosphorylated at serine 608 has growth suppressive activity. Phosphorylation of serines 608/612 inhibits binding of E2F-1 to RB. In Nalm-6 acute lymphoblastic leukemia extracts, serine 608 is phosphorylated by CDK4/6 complexes but not by CDK2. We reasoned that phosphorylation of serines 608/612 by redundant CDKs could accelerate phospho group formation and determined which G1 CDK contributes to serine 612 phosphorylation. Here, we report that CDK4 complexes from Nalm-6 extracts phosphorylated in vitro the CDK2-preferred serine 612, which was inhibited by p16INK4a, and fascaplysin. In contrast, serine 780 and serine 795 were efficiently phosphorylated by CDK4 but not by CDK2. The data suggest that the redundancy in phosphorylation of RB by CDK2 and CDK4 in Nalm-6 extracts is limited. Serine 612 phosphorylation by CDK4 also occurred in extracts of childhood acute lymphoblastic leukemia cells but not in extracts of mobilized CD34+ hemopoietic progenitor cells. This phenomenon could contribute to the commitment of childhood acute lymphocytic leukemia cells to proliferate and explain their refractoriness to differentiation-inducing agents.
Resumo:
p53 plays a role in cell cycle arrest and apoptosis. p53 has also been shown to be involved in DNA replication. To study the effect of p53 on DNA replication, we utilized a SV40 based shuttle vector system. The pZ402 shuttle vector, was constructed with a mutated T-antigen unable to interact with p53 but able to support replication of the shuttle vector. When a transcriptional activation domain p53 mutant was tested for its ability to inhibit DNA replication no inhibition was observed. Competition assays with the DNA binding domain of p53 was also able to block the inhibition of DNA replication by p53 suggesting that p53 can inhibit DNA replication through the transcriptional activation of a target gene. One likely target gene, p21$\sp{\rm cip/waf}$ was tested to determine whether p53 inhibited DNA replication by transcriptionally activating p21$\sp{\rm cip/waf}$. Two independent approaches utilizing p21$\sp{\rm cip/waf}$ null cells or the expression of an anti-sense p21$\sp{\rm cip/waf}$ expression vector were utilized. p53 was able to inhibit pZ402 replication independently of p21$\sp{\rm cip/waf}$. p53 was also able to inhibit DNA replication independent of the p53 target genes Gadd45 and the replication processivity factor PCNA. The inhibition of DNA replication by p53 was also independent of direct DNA binding to a consensus site on the replicating plasmid. p53 mutants can be classified into two categories: conformational and DNA contact mutants. The two types of p53 mutants were tested for their effects on DNA replication. While all conformational mutants were unable to inhibit DNA replication three out of three DNA contact mutants tested were able to inhibit DNA replication. The work here studies the effect wild-type and mutant p53 has on DNA replication and demonstrated a possible mechanism by which wild-type p53 could inhibit DNA replication through the transcriptional activation of a target gene. ^
Resumo:
Mutations of von Hippel–Lindau disease (VHL) tumor-suppressor gene product (pVHL) are found in patients with dominant inherited VHL syndrome and in the vast majority of sporadic clear cell renal carcinomas. The function of the pVHL protein has not been clarified. pVHL has been shown to form a complex with elongin B and elongin C (VBC) and with cullin (CUL)-2. In light of the structural analogy of VBC-CUL-2 to SKP1-CUL-1-F-box ubiquitin ligases, the ubiquitin ligase activity of VBC-CUL-2 was examined in this study. We show that VBC-CUL-2 exhibits ubiquitin ligase activity, and we identified UbcH5a, b, and c, but not CDC34, as the ubiquitin-conjugating enzymes of the VBC-CUL-2 ubiquitin ligase. The protein Rbx1/ROC1 enhances ligase activity of VBC-CUL-2 as it does in the SKP1-CUL-1-F-box protein ligase complex. We also found that pVHL associates with two proteins, p100 and p220, which migrate at a similar molecular weight as two major bands in the ubiquitination assay. Furthermore, naturally occurring pVHL missense mutations, including mutants capable of forming a complex with elongin B–elongin C-CUL-2, fail to associate with p100 and p220 and cannot exhibit the E3 ligase activity. These results suggest that pVHL might be the substrate recognition subunit of the VBC-CUL-2 E3 ligase. This is also, to our knowledge, the first example of a human tumor-suppressor protein being directly involved in the ubiquitin conjugation system which leads to the targeted degradation of substrate proteins.
Resumo:
PTEN/MMAC1 is a tumor suppressor gene located on chromosome 10q23. Inherited PTEN/MMAC1 mutations are associated with a cancer predisposition syndrome known as Cowden’s disease. Somatic mutation of PTEN has been found in a number of malignancies, including glioblastoma, melanoma, and carcinoma of the prostate and endometrium. The protein product (PTEN) encodes a dual-specificity protein phosphatase and in addition can dephosphorylate certain lipid substrates. Herein, we show that PTEN protein induces a G1 block when reconstituted in PTEN-null cells. A PTEN mutant associated with Cowden’s disease (PTEN;G129E) has protein phosphatase activity yet is defective in dephosphorylating inositol 1,3,4,5-tetrakisphosphate in vitro and fails to arrest cells in G1. These data suggest a link between induction of a cell-cycle block by PTEN and its ability to dephosphorylate, in vivo, phosphatidylinositol 3,4,5-trisphosphate. In keeping with this notion, PTEN can inhibit the phosphatidylinositol 3,4,5-trisphosphate-dependent Akt kinase, a downstream target of phosphatidylinositol 3-kinase, and constitutively active, but not wild-type, Akt overrides a PTEN G1 arrest. Finally, tumor cells lacking PTEN contain high levels of activated Akt, suggesting that PTEN is necessary for the appropriate regulation of the phosphatidylinositol 3-kinase/Akt pathway.
Resumo:
O Carcinoma de Pulmão de Células Não Pequenas (NSCLC) é uma doença freqüentemente letal e altamente resistente à terapia oncológica convencional, como por exemplo, o tratamento quimioterápico com cisplatina e paclitaxel. A superexpressão de Ciclooxigenase-2 (COX-2) é constantemente observada em pacientes com NSCLC, estando associada ao prognóstico ruim destes pacientes. Acredita-se que a alta expressão de COX-2 produz efeitos anti-apoptóticos, porém pouco é conhecido sobre os mecanismos de regulação desta enzima. Muitos sinais capazes de ativar COX-2 também induzem a proteína supressora de tumor p53, conhecida pelo seu papel fundamental no controle da proliferação celular e apoptose. Dados recentes indicam que a proteína p53 é um importante regulador da expressão de COX-2. O objetivo desta dissertação foi avaliar os efeitos da quimioterapia na expressão da enzima COX-2 em linhagens celulares com diferente status do gene TP53, e ainda, correlacionar a expressão de COX-2 e o status mutacional de TP53, com as características clínico-patológicas de pacientes com NSCLC. Como ferramentas experimentais foram usadas técnicas de biologia celular e molecular como interferência de RNA, PCR em tempo real, análise mutacional e imuno-histoquímica. Com os resultados obtidos, observamos que as linhagens celulares de câncer de pulmão que apresentam p53 na sua forma selvagem, quando expostas ao tratamento com cisplatina, apresentaram indução da expressão de COX-2 (RNAm e proteína), em adição ao aumento da síntese de Prostaglandina E2 (PGE2). Em contrapartida, a expressão de COX-2 não foi alterada após o tratamento com cisplatina nas linhagens celulares que apresentavam mutação no gene TP53. Ao avaliar o tratamento com paclitaxel, foi observado um aumento da expressão de COX-2 nas linhagens A549 e H460 (linhagens celulares do tipo selvagem para p53), entretanto não foi observada alteração nos níveis de PGE2. Em adição, o tratamento com paclitaxel induziu um aumento da expressão de COX-2 na linhagem com deleção em TP53, ACC LC-319. Em seguida, após silenciamento de p53 na linhagem celular A549, por interferência de RNA, a cisplatina passou a não ser mais capaz de induzir o aumento da expressão de COX-2. No tratamento com paclitaxel, o silenciamento de TP53 não mudou a expressão de COX-2, indicando assim um efeito independente de p53. Dessa maneira, sugerimos que a indução de COX-2, por cisplatina, em linhagens celulares NSCLC é dependente de p53. Na análise dos pacientes NSCLC, os resultados demonstram que 54% dos pacientes apresentam expressão positiva de COX-2. Mutações em TP53 foram observadas em 57% dos pacientes, incluindo 56% de fumantes correntes e 37% de ex-fumantes. Uma associação entre a expressão de COX-2 e o status selvagem de TP53 foi observada, entre os pacientes que apresentaram expressão positiva de COX-2, 80% apresentaram TP53 selvagem. Um número maior de pacientes é necessário para aumentar o poder estatístico e confirmar as tendências observadas nesse estudo
Resumo:
Here, we show for the first time that the familial breast/ovarian cancer susceptibility gene, BRCA1, along with interacting ΔNp63 proteins, transcriptionally upregulate the putative tumour suppressor protein, S100A2. Both BRCA1 and ΔNp63 proteins are required for S100A2 expression. BRCA1 requires ΔNp63 proteins for recruitment to the S100A2 proximal promoter region, while exogenous expression of individual ΔNp63 proteins cannot activate S100A2 transcription in the absence of a functional BRCA1. Consequently, mutation of the ΔNp63/p53 response element within the S100A2 promoter completely abrogates the ability of BRCA1 to upregulate S100A2. S100A2 shows growth control features in a range of cell models. Transient or stable exogenous S100A2 expression inhibits the growth of BRCA1 mutant and basal-like breast cancer cell lines, while short interfering RNA (siRNA) knockdown of S100A2 in non-tumorigenic cells results in enhanced proliferation. S100A2 modulates binding of mutant p53 to HSP90, which is required for efficient folding of mutant p53 proteins, by competing for binding to HSP70/HSP90 organising protein (HOP). HOP is a cochaperone that is required for the efficient transfer of proteins from HSP70 to HSP90. Loss of S100A2 leads to an HSP90-dependent stabilisation of mutant p53 with a concomitant loss of p63. Accordingly, S100A2-deficient cells are more sensitive to the HSP-90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, potentially representing a novel therapeutic strategy for S100A2- and BRCA1-deficient cancers. Taken together, these data demonstrate the importance of S100A2 downstream of the BRCA1/ΔNp63 signalling axis in modulating transcriptional responses and enforcing growth control mechanisms through destabilisation of mutant p53.
Resumo:
We have developed a new method for the analysis of voids in proteins (defined as empty cavities not accessible to solvent). This method combines analysis of individual discrete voids with analysis of packing quality. While these are different aspects of the same effect, they have traditionally been analysed using different approaches. The method has been applied to the calculation of total void volume and maximum void size in a non-redundant set of protein domains and has been used to examine correlations between thermal stability and void size. The tumour-suppressor protein p53 has then been compared with the non-redundant data set to determine whether its low thermal stability results from poor packing. We found that p53 has average packing, but the detrimental effects of some previously unexplained mutations to p53 observed in cancer can be explained by the creation of unusually large voids. (C) 2004 Elsevier Ltd. All rights reserved.