16 resultados para Trinitrotoluene


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomonas putida GG04 and Bacillus SF have been successfully incorporated into an explosive formulation to enhance biotransformation of TNT residues and/or explosives which fail to detonate due to technical faults. The incorporation of the microorganisms into the explosive did not affect the quality of the explosive (5 years storage) in terms of detonation velocity while complete biotransformation of TNT moieties upon transfer in liquid media was observed after 5 days. The incorporated microorganisms reduced TNT sequentially leading to the formation of hydroxylaminodinitrotoluenes (HADNT), 4-amino-2,6-dinitrotoluenes; 2-amino-4,6-dinitrotoluenes, different azoxy compounds; 2,6-diaminonitrotoluenes (2,4-DAMNT) and 2,4-diaminonitrotoluenes (2,6-DAMNT). However, the accumulation of AMDNT and DAMNT (major dead-end metabolites) was effectively prevented by incorporating guaiacol and catechol during the biotransformation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L−1 and 9 μg L−1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L−1), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is primarily focused in establishing the solid-state sensory abilities of several luminescent polymeric calix[4]arene-based materials toward selected nitroaromatic compounds (NACs), creating the foundations for their future application as high performance materials for detection of high explosives. The phenylene ethynylene-type polymers possessing bis-calix[4]arene scaffolds in their core were designed to take advantage of the known recognition abilities of calixarene compounds toward neutral guests, particularly in solid-state, therefore providing enhanced sensitivity and selectivity in the sensing of a given analyte. It was found that all the calix[4]arene-poly(para-phenylene ethynylene)s here reported displayed high sensitivities toward the detection of nitrobenzene, 2,4-dinitrotoluene and 2,4,6-trinitrotoluene (TNT). Particularly effective and significant was the response of the films (25-60 nm of thickness) upon exposure to TNT vapor (10 ppb): over 50% of fluorescence quenching was achieved in only 10 s. In contrast, a model polymer lacking the calixarene units showed only reduced quenching activity for the same set of analytes, clearly highlighting the relevance of the macrocyclics in promoting the signaling of the transduction event. The films exhibited high photostability (less than 0.5% loss of fluorescence intensity up to 15 min of continuous irradiation) and the fluorescence quenching sensitivity could be fully recovered after exposure of the quenched films to saturated vapors of hydrazine (the initial fluorescence intensities were usually recovered within 2-5 min of exposure to hydrazine).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New sensory materials based on p-phenylene ethynylene trimers integrating calix[4]arene receptors (CALIX-PET) and tert-butylphenol (TBP-PET) moieties have been synthesized and their sensitivity and selectivity for the detection of nitroaromatic compounds (NACs) such as nitrobenzene (NB), 2,4-dinitrotoluene (2,4-DNT), 2,4,6-trinitrotoluene (TNT) and picric acid (PA) investigated in fluid phase and solid-state. It was found that both fluorophores displayed high sensitivities toward NACs detection in solution as evaluated by the Stern-Volmer formalism. For all the tested explosives, the ratio of fluorescence intensities (F-0/F) is a linear function of the quencher concentration only after appropriate correction of fluorescence quenching data for inner-filter effects. The quenching efficiencies for CALIX-PET and TBP-PET follow the order PA >> TNT > DNT > NB, which correlate well with the quenchers electron affinities as evaluated from their LUMOs energies thereby suggesting a photoinduced electron transfer as the dominant mechanism of fluorescence quenching. The selectivity of these sensors was checked against exemplar interferents possessing differentiated electronic properties (benzoic acid, 2,4-dichlorophenol and benzoquinone) and reduced quenching activity was detected. The quenching efficiencies and response times of the two fluorophores in the solid-state toward NB, 2,4-DNT and TNT vapors were evaluated through steady-state fluorescence quenching experiments with the materials dispersed in polymeric matrices or as neat films. The most significant fluorescence quenching responses were achieved for drop-casted films of TBP-PET upon exposure to nitroaromatics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioreporter bacteria, i.e., strains engineered to respond to chemical exposure by production of reporter proteins, have attracted wide interest because of their potential to offer cheap and simple alternative analytics for specified compounds or conditions. Bioreporter construction has mostly exploited the natural variation of sensory proteins, but it has been proposed that computational design of new substrate binding properties could lead to completely novel detection specificities at very low affinities. Here we reconstruct a bioreporter system based on the native Escherichia coli ribose binding protein RbsB and one of its computationally designed variants, reported to be capable of binding 2,4,6-trinitrotoluene (TNT). Our results show in vivo reporter induction at 50 nM ribose, and a 125 nM affinity constant for in vitro ribose binding to RbsB. In contrast, the purified published TNT-binding variant did not bind TNT nor did TNT cause induction of the E. coli reporter system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2,2',4,4',6,6'-hexanitrostilbene (HNS) is a very important high explosive that is used in a range of military, aerospace and industrial formulations owing to its suitable properties. It is an insensitive and thermaly stable explosive that can be produced from 2,4,6-trinitrotoluene (TNT). This paper shows the characterization of synthesized HNS by different techniques, such as elementary analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR) and through the determination of the heat of combustion in a calorimeter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production and use of nitroaromatic explosives have resulted in their dissemination into the environment, where their presence in waterways and soil represents an ecological and health hazard. The hazardous characteristics of these compounds need to be carefully studied, so that the impact of their discharge on the environment can be better evaluated. This work presents the characterization of wastewater from Brazilian TNT industry using as analytical techniques mass spectroscopy, chromatography, toxicity assays and other physico-chemical analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2,4,6-trinitrotoluene (TNT) is an energetic material that shows scarce crystalline properties that can be improved by addition of 2,2',4,4',6,6'-hexanitrostilbene (HNS) in the crystallization process. HNS is a very important high explosive used in a variety of military, aerospace and industrial formulations owing to its suitable properties. It is an insensitive and thermal stable explosive that can be produced from 2,4,6-trinitrotoluene (TNT). The purpose of this work is the quantitative determination of HNS and TNT in explosives by thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work the potentiality of reductive-oxidative processes based on zero-valent iron was studied aiming the degradation of nitroaromatic compounds and the remediation of residues from the explosive industry. The reductive process was applied as a continuous treatment system, using steel-wool as zero-valent iron source. The process permitted an almost total degradation of nitrobenzene, nitrophenol, nitrotoluene, dinitrotoluene and trinitrotoluene, probably with generation of the respective amine-derivative. The yellow-water residue, containing soluble trinitrotoluene, was notably modified by the reductive process, a fact that permitted a substantial enhancement of its biodegradability. Furthermore, the subsequent photo-Fenton process allowed TOC removal of about 80%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gelation provides a unique medium, which often induces organization of molecules resulting in the modulation of their optical, morphological and electronic properties thereby opening a new world of fascinating materials with interesting physical properties at nano- meso- and macroscopic levels. Supramolecular gels based on linear π-systems have attracted much attention due to their inherent optical and electronic properties which find application in organic electronics, light harvesting and sensing. They exhibit reversible properties due to the dynamic nature of noncovalent forces. As a result, studies on such soft materials are currently a topic of great interest. Recently, researchers are actively involved in the development of sensors and stimuli-responsive materials based on self-assembled π-systems, which are also called smart materials. The present thesis is divided into four chapters

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the manufacture of explosives, large amounts of water are used to remove unwanted by-products generated. This water in turn, ends up in wastewater treatment plants or water bodies. The aim of this study was to evaluate the toxic potential of effluent generated by 2.4.6-Trinitrotoluene (TNT) production, yellow water, red water and mixture of yellow and red water, produced from a plant located in the Paraiba Valley, Sao Paolo state, Brazil. Daphnia similis, Danio rerio, Escherichia coli, Pseudomonas putida and Pseudokircheneriella subcaptata were used as test organisms. Physicochemical parameters such as color, pH, conductivity, total dissolved solids, dissolved oxygen, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were evaluated. Effluent from 2.4.6-TNT production was extremely toxic to all test organisms. The physicochemical parameters evaluated showed high levels of conductivity (from 41.533 to 42.344 mu S /cm) and chemical oxygen demand (COD of 8471 to 27.364 mg/L) for the effluents analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Annual Biochemical Engineering Symposium Series started in 1970 when Professors Larry E. Erickson (Kansas State University) and Peter J. Reilly (then with University of Nebraska-Lincoln) got together in Manhattan, KS along with their students for a half-day powwow and technical presentation by their students. Ever since then, it has been a forum for Biochemical Engineering students in the heartland of USA to present their research to their colleagues in the form of talks and posters. The institutions actively involved with this annual symposium include Colorado State University, Kansas State University, Iowa State University, University of Colorado, University of Kansas, University of Missouri-Columbia, and University of Oklahoma. The University of lowa and University of Nebraska-Lincoln have also participated in the conference in recent years. The host institutions for the different symposia have been: Kansas State University (1, 3, 5, 9, 12, 16, 20), Iowa State University (6, 7, 10, 13, 17, 22), University of Missouri-Columbia (8, 14, 19, 25), Colorado State University (II, 15, 21), University of Colorado (18, 24), University of Nebraska-Lincoln (2, 4), University of Oklahoma (23). The next symposium will be held at Kansas State University. Proceedings of the Symposium are edited by faculty of the host institution and include manuscripts written and submitted by the presenters (students). These often include works-in-progress and final publication usually takes place in refereed journals. ContentsPatrick C. Gilcrease and Vincent G. Murphy, Colorado State University. Use of 2,4,6-Trinitrotoluene (TNT) As A Nitrogen Source By A Pseudomonas florescens Species Under Aerobic Conditions. Marulidharan Narayanan, Lawrence C. Davis, and Larry E. Erickson, Kansas State University. Biodegradation Studies of Chlorinated Organic Pollutants in a Chamber in the Presence of Alfalfa Plants. S.K. Santharam, L.E. Erickson, and L.T. Fan, Kansas State University.Surfactant-Enhanced Remediation of a Non-Aqueous Phase Contaminant in Soil. Barry Vant-Hull, Larry Gold, and Robert H. Davis, University of Colorado.The Binding of T7 RNA Polymerase to Double-Stranded RNA. Jeffrey A. Kern and Robert H. Davis, University of Colorado.Improvement of RNA Transcription Yield Using a Fed-Batch Enzyme Reactor. G. Szakacs, M. Pecs, J. Sipocz, I. Kaszas, S.R. Deecker, J.C. Linden, R.P. Tengerdy, Colorado State University.Bioprocessing of Sweet Sorghum With In Situ Produced Enzymes. Brad Forlow and Matthias Nollert, University of Oklahoma.The Effect of Shear Stress ad P-selectin Site Density on the Rolling Velocity of White Blood Cells. Martin C. Heller and Theodore W. Randolph, University of Colorado.The Effects of Plyethylene Glycol and Dextran on the Lyophilization of Human Hemoglobin. LaToya S. Jones and Theodore W. Randolph, University of Colorado.Purification of Recombinant Hepatitis B Vaccine: Effect of Virus/Surfactant Interactions. Ching-Yuan Lee, Michael G. Sportiello, Stephen Cape, Sean Ferree, Paul Todd, Craig E. Kundrot, and Cindy Barnes, University of Colorado.Application of Osmotic Dewatering to the Crystallization of Oligonucleotides for Crystallography. Xueou Deng, L.E. Erickson, and D.Y.C. Fung, Kansas State University.Production of Protein-Rich Beverages from Cheese Whey and Soybean by rapid Hydration Hydrothermal Cooking. Pedro M. Coutinho, Michael K. Dowd, and Peter J. Reilly, Iowa State University.Automated Docking of Glucoamylase Substrates and Inhibitors. J. Johansson and R.K. Bajpai, University of Missouri.Adsorption of Albumin on Polymeric Microporous Membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trinitrotoluene in the purification step (TNT) produced in industries, are carried out two washes at the end of the process. The first wash is done with vaporized water, which originates from the first effluent called yellow water, then the second washing with the use of sodium sulfite is performed (Na2SO3), generating a second effluent red water. This study aimed to study the individual effects, as well as the association of heterogeneous photocatalysis using TiO2 and biological treatment in air lift reactor using activated sludge (bacterial biomass) for the remediation of wastewater contaminated with nitroaromatic compounds in order to reduce toxicity and adjust the legal parameters according to regulatory agencies for disposal in waterways. The photocatalytic treatment was conducted by factorial design obtaining the best reaction conditions (pH 6.5 and concentration of TiO2 0.1 gL-1), with best results obtained at 360 minutes of reaction, reducing the absorbance 97.00%, 94.20% of the chemical oxygen demand (COD), 67.70% of total phenols, as well as a total reduction of observed peaks and assigned to nitroaromatic compounds by high-performance liquid chromatography. In the biological treatment, there was a 53.40% reduction in absorbance at 275 nm 10.00% 36.00% COD and total phenols in a short time (3 days), while for extended periods (48 days) there was an antagonistic influence on the results so that was the elevation of these parameters (COD and total phenols) instead of reducing. Chromatographic analysis confirmed the effectiveness of the biological degradation by reducing the peaks corresponding to compounds DNT and TNT. The Association of photocatalytic and biological treatments decreased results in the order of 91.10% absorbance, 70.26% of total phenols and 88.87% of COD. While the combination of biological and photocatalytic treatments generated relatively lower efficiencies, with 77.30% of absorbance reduction, 62.10% reduction of total phenols and a decrease of 87.00% of COD. In general, when comparing the chemical and biological processes in isolation, the photocatalytic treatment showed the best results. However, comparing the results of isolation and established associations, the association biological x photocatalysis showed more promising results in the treatment of red water effluent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid, sensitive and selective detection of chemical hazards and biological pathogens has shown growing importance in the fields of homeland security, public safety and personal health. In the past two decades, efforts have been focusing on performing point-of-care chemical and biological detections using miniaturized biosensors. These sensors convert target molecule binding events into measurable electrical signals for quantifying target molecule concentration. However, the low receptor density and the use of complex surface chemistry in receptors immobilization on transducers are common bottlenecks in the current biosensor development, adding to the cost, complexity and time. This dissertation presents the development of selective macromolecular Tobacco mosaic virus-like particle (TMV VLP) biosensing receptor, and the microsystem integration of VLPs in microfabricated electrochemical biosensors for rapid and performance-enhanced chemical and biological sensing. Two constructs of VLPs carrying different receptor peptides targeting at 2,4,6-trinitrotoluene (TNT) explosive or anti-FLAG antibody are successfully bioengineered. The VLP-based TNT electrochemical sensor utilizes unique diffusion modulation method enabled by biological binding between target TNT and receptor VLP. The method avoids the influence from any interfering species and environmental background signals, making it extremely suitable for directly quantifying the TNT level in a sample. It is also a rapid method that does not need any sensor surface functionalization process. For antibody sensing, the VLPs carrying both antibody binding peptides and cysteine residues are assembled onto the gold electrodes of an impedance microsensor. With two-phase immunoassays, the VLP-based impedance sensor is able to quantify antibody concentrations down to 9.1 ng/mL. A capillary microfluidics and impedance sensor integrated microsystem is developed to further accelerate the process of VLP assembly on sensors and improve the sensitivity. Open channel capillary micropumps and stop-valves facilitate localized and evaporation-assisted VLP assembly on sensor electrodes within 6 minutes. The VLP-functionalized impedance sensor is capable of label-free sensing of antibodies with the detection limit of 8.8 ng/mL within 5 minutes after sensor functionalization, demonstrating great potential of VLP-based sensors for rapid and on-demand chemical and biological sensing.