9 resultados para Trichinosis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichinosis in the arctic regions of the world has received considerable attention during recent years, particularly since the work of Roth (1948) in Greenland. In Connell's (1949) review of arctic trichinosis some Alaskan and Canadian records were included but, until now, little has been known of the status of the disease in Alaska. Information available at the present time indicates that the incidence of trichinosis is high in circumpolar carnivores and that marine mammals have a definite place in its epizootiology. Present knowledge cannot explain the survival of trichinosis in marine mammal populations, but it is evident that they may serve as important sources of human infection. Up to the present time the following mammals from Alaska have been found to be infected: From the arctic coast-polar bear, Thalarctas maritimus; arctic fox, Alapex lagapus irmuitus; red fox, Vulpes fulva alascemis; white whale, Delphinapterus leucas; Eskimo dog. From south of the Brooks Range--brown and grizzly bears, Ursus spp.; wolf, Canis lupus ssp.; wolverine. Gula l. luscus. At the time of writing, nearly ail species of land carnivores in Alaska have been examined as well as many other mammalian species less likely to be infected, including various rodents, shrews, and others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Examinaram-se 594 diafragmas de roedores capturados na zona portuária de Santos tendo em vista a procura de larvas de Trichinella spiralis. Todos os diafragmas examinados estavam negativos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1948 much interest in trichinosis in arctic regions was aroused, particularly by the findings of Thorborg et al. (1948), who investigated serious outbreaks occurring among the Eskimo of West Greenland during 1947. Consequently, with the founding of the Arctic Health Research Center in the autumn of 1948, a study of trichinosis in Alaska was the first project to be initiated by the Zoonotic Disease Section (formerly Animal-borne Disease Section) of this Center. Field work was begun in January, 1949, and a preliminary note on trichinosis in Alaskan mammals was published by Brandly and Rausch (1950). The subject of trichinosis in arctic regions was reviewed by Connell (1949). The survey to determine the prevalence of T. spiralis in mammals in Alaska was terminated in the spring of 1953; this paper reports the results of this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Alaska, as in arctic and subarctic Eurasia, important natural-focal zoonoses are rabies, brucellosis, tularemia, trichinosis, alveolar hydatid disease, cystic hydatid disease, and diphyllobothriasis. Most frequently affected are aboriginal peoples in villages within biocenoses that include the natural parasite-host assemblages. Pathogens are transmitted to man from wild animals and from dogs, which are important as synanthropic hosts. The prevalence and rate of transmission of certain pathogens in natural foci are related to the numerical density of small mammals, especially rodents, which may themselves be involved as hosts, and on which the numbers of their predators ultimately depend, such as is evident in the natural cycles of Echinococcus multilocularis and of rabies virus. Some pathogens in northern regions exhibit biological Characteristics that separate them from morphologically indistinguishable strains at lower latitudes (e.g., Trichinella spiralis and E. granulosus). Host-parasite relationships may also differ, as in the Arctic where rabies virus is maintained in populations of foxes, without significant involvement of mammals of other groups. Faunal interchanges during and after the Pleistocene period have influenced the distribution of parasite-host assemblages in Alaska.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most tissue-invasive parasitic helminths prime for type 1 hypersensitivity or anaphylaxis during some phase of their life cycles. A prototype in this regard is the nematode Trichinella spiralis. Blood protozoa capable of tissue invasion, such as Trypanosoma brucei, might also be expected to prime for the expression of anaphylaxis. However, this response is usually absent in protozoal infections. The hypothesis tested was that failure of hosts infected with T.brucei to express anaphylaxis is related to this parasite's ability to selectively down-regulate immunoglobulin E (IgE) production, and not to an innate lack of allergenicity on the part of T.brucei-derived antigens. This hypothesis was tested by studying in the intestine of rats, antigen-induced Cl$\sp-$ secretion, which results from a local anaphylactic response mediated by IgE and mucosal mast cells. The Cl$\sp-$ secretory response can be primed either by infection with T.spiralis or by the parenteral administration of antigen. Anaphylaxis-induced Cl$\sp-$ secretion is expressed in vitro, and can be quantified electrophysiologically, as a change in transmural short-circuit current when sensitized intestine is mounted in Ussing chambers and challenged with the sensitizing antigen.^ Rats injected parenterally with trypanosome antigen elicited intestinal anaphylaxis in response to antigenic challenge. In contrast, the intestine of rats infected with T.brucei failed to respond to challenge with trypanosome antigen. Infection with T.brucei also suppressed antigen-induced Cl$\sp-$ secretion in rats sensitized and challenged with various antigens, including T.spiralis antigen. However, T.brucei infection did not inhibit the anaphylactic response in rats concomitantly infected with T.spiralis. Relative to the anaphylactic mediators, T.brucei infection blocked production of IgE in rats parenterally injected with antigen but not in T.spiralis-infected hosts. Also, the mucosal mastocytosis normally associated with trichinosis was unaffected by the trypanosome infection. These results support the conclusion that the failure to express anaphylaxis-mediated Cl$\sp-$ secretion in T.brucei infected rats, is due to this protozoan's ability to inhibit IgE production and not to the lack of allergenicity of trypanosome antigens. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The index for this report is included in the second and final report of the commission issued under title: The meat you eat.