989 resultados para Trash raw
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The processing of juice expressed from whole green sugarcane crop (stalk and trash) leads to poor clarification performance, reduced sugar yield and poor raw sugar quality. The cause of these adverse effects is linked to the disproportionate contribution of impurities from the trash component of the crop. This paper reports on the zeta (ζ) potential, average size distribution (d50) and fractal dimension (Df) of limed juice particles derived from various juice types using laser diffraction and dynamic light scattering techniques. The influence of non-sucrose impurities on the interactive energy contributions between sugarcane juice particles was examined on the basis of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Results from these investigations have provided evidence (in terms of particle stability) on why juice particles derived from whole green sugarcane crop are relatively difficult to coagulate (and flocculate). The presence of trash reduces the van der Waals forces of attraction between particles, thereby reducing coagulation and flocculation processes. It is anticipated that further fundamental work will lead to strategies that could be adopted for clarifying juices expressed from whole green sugarcane crop.
Resumo:
The processing of juice expressed from whole green sugarcane crop (stalk and trash) leads to poor clarification performance, reduced sugar yield and poor raw sugar quality. The cause of these adverse effects is linked to the disproportionate contribution of impurities from the trash component of the crop. This paper reports on the zeta (?) potential, average size distribution (d50) and fractal dimension (Df) of limed juice particles derived from various juice types using laser diffraction and dynamic light scattering techniques. The influence of non-sucrose impurities on the interactive energy contributions between sugarcane juice particles was examined on the basis of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Results from these investigations have provided evidence (in terms of particle stability) on why juice particles derived from whole green sugarcane crop are relatively difficult to coagulate (and flocculate). The presence of trash reduces the van der Waals forces of attraction between particles, thereby reducing coagulation and flocculation processes. It is anticipated that further fundamental work will lead to strategies that could be adopted for clarifying juices expressed from whole green sugarcane crop.
Resumo:
The picturesque aesthetic in the work of Sir John Soane, architect and collector, resonates in the major work of his very personal practice – the development of his house museum, now the Soane Museum in Lincoln’s Inn Fields in London. Soane was actively involved with the debates, practices and proponents of picturesque and classical practices in architecture and landscape and his lectures reveal these influences in the making of The Soane, which was built to contain and present diverse collections of classical and contemporary art and architecture alongside scavenged curiosities. The Soane Museum has been described as a picturesque landscape, where a pictorial style, together with a carefully defined itinerary, has resulted in the ‘apotheosis of the Picturesque interior’. Soane also experimented with making mock ruinscapes within gardens, which led him to construct faux architectures alluding to archaeological practices based upon the ruin and the fragment. These ideas framed the making of interior landscapes expressed through spatial juxtapositions of room and corridor furnished with the collected object that characterise The Soane Museum. This paper is a personal journey through the Museum which describes and then reviews aspects of Soane’s work in the context of contemporary theories on ‘new’ museology. It describes the underpinning picturesque practices that Soane employed to exceed the boundaries between interior and exterior landscapes and the collection. It then applies particular picturesque principles drawn from visiting The Soane to a speculative project for a house/landscape museum for the Oratunga historic property in outback South Australia, where the often, normalising effects of conservation practices are reviewed using minimal architectural intervention through a celebration of ruinous states.
Resumo:
Most salad vegetables are eaten fresh by consumers. However, raw vegetables may pose a risk of transmitting opportunistic bacteria to immunocompromised people, including cystic fibrosis (CF) patients. In particular, CF patients are vulnerable to chronic Pseudomonas aeruginosa lung infections and this organism is the primary cause of morbidity and mortality in this group. Clonal variants of P. aeruginosa have been identified as emerging threats to people afflicted with CF; however it has not yet been proven from where these clones originate or how they are transmitted. Due to the organisms‟ aquatic environmental niche, it was hypothesised that vegetables may be a source of these clones. To test this hypothesis, lettuce, tomatoes, mushrooms and bean sprout packages (n = 150) were analysed from a green grocer, supermarket and farmers‟ market within the Brisbane region, availability permitting. The internal and external surfaces of the vegetables were separately analysed for the presence of clonal strains of P. aeruginosa using washings and homogenisation techniques, respectively. This separation was in an attempt to establish which surface was contaminated, so that recommendations could be made to decrease or eliminate P. aeruginosa from these foods prior to consumption. Soil and water samples (n = 17) from local farms were also analysed for the presence of P. aeruginosa. Presumptive identification of isolates recovered from these environmental samples was made based on growth on Cetrimide agar at 42°C, presence of the cytochrome-oxidase enzyme and inability to ferment lactose. P. aeruginosa duplex real-time polymerase chain reaction assay (PAduplex) was performed on all bacterial isolates presumptively identified as P. aeruginosa. Enterobacterial repetitive intergenic consensus strain typing PCR (ERIC-PCR) was subsequently performed on confirmed bacterial isolates. Although 72 P. aeruginosa were isolated, none of these proved to be clonal strains. The significance of these findings is that vegetables may pose a risk of transmitting sporadic strains of P. aeruginosa to people afflicted with CF and possibly, other immunocompromised people.
Resumo:
There has been substantial interest within the Australian sugar industry in product diversification as a means to reduce its exposure to fluctuating raw sugar prices and in order to increase its commercial viability. In particular, the industry is looking at fibrous residues from sugarcane harvesting (trash) and from sugarcane milling (bagasse) for cogeneration and the production of biocommodities, as these are complementary to the core process of sugar production. A means of producing surplus residue (biomass) is to process whole sugarcane crop. In this paper, the composition of different juices derived from different harvesting methods, viz. burnt cane with all trash extracted (BE), green cane with half of the trash extracted (GE), and green cane (whole sugarcane crop) with trash unextracted (GU), were investigated and the results and comparison presented. The determination of electrical conductivity, inorganic composition, and organic acids indicate that both GU and GE cane juice contain a higher proportion of soluble inorganic ions and ionisable organic acids, compared to BE cane juice. It is important to note that there are considerably higher levels of Na ions and citric acid, but relatively low P levels in the GU samples. A higher level of reducing sugars was analysed in the GU samples than the BE samples due to the higher proportion of impurities found naturally in sugarcane tops and leaves. The purity of the first expressed juice (FEJ) of GU cane was on average higher than that of FEJ of BE cane. Results also show that GU juices appear to contain higher levels of proteins and polysaccharides, with no significant difference in starch levels.
Resumo:
Processing of juice expressed from green sugar cane containing all the trash (i.e., tops and leaves, the nonstalk component) of the sugar cane plant during sugar manufacture has been reported to lead to poor clarified juice (CJ) quality. Studies of different liming techniques have been conducted to identify which liming technique gives the best clarification performance from juice expressed from green cane containing half of all trash extracted (GE). Results have shown that lime saccharate addition to juice at 76 °C either continuous or batchwise gives satisfactory settling rates of calcium phosphate flocs(50−70 cm/min) and CJ with low turbidity and minimal amounts of mineral constituents. Surprisingly, the addition of phosphoric acid (≤300 mg/kg as P2O5), prior to liming to reduce juice turbidity (≤80%), increased the Mg (≤101%) and Si(≤148%) contents particularly for clarified GE juices. The increase was not proportional with increasing phosphoric acid dose. The nature of the flocs formed, including the zeta potential of the particles by the different liming techniques, has been used to account for the differences in clarification performance. Differences between the qualities of the CJ obtained with GE juice and that of burnt cane juices with all trash extracted (BE) have been discussed to provide further insights into GE processing.
Resumo:
The presence of colour in raw sugar plays a key role in the marketing strategy of the Australian raw sugar industry. Some sugars are relatively difficult to decolourise during refining and develop colour during storage. A new approach that might result in efficient and cost-effective colour removal during the sugar manufacturing process is the use of an advanced oxidation process (AOP), known as Fenton oxidation, that is, catalytic production of hydroxyl radicals from the decomposition of hydrogen peroxide using ferrous iron. As a first step towards developing this technology, this study determined the composition of colour precursors present in the juice of cane harvested by three different methods. The methods were harvesting cane after burning, harvesting the whole crop with half of the trash extracted and harvesting the whole crop with no trash extracted. The study also investigated the degradation at pH 3, 4 and 5 of a phenolic compound, caffeic acid (3,4–dihydroxycinnamic acid), which is present in sugar cane juice, using both hydrogen peroxide and Fenton’s reagent. The results show that juice expressed from whole crop cane has significantly higher colour than juices expressed from burnt cane. However, the concentrations of phenolic acids were lower in the juices expressed from whole crop cane. The main phenolic acids present in these juices were p-coumaric, vanillic, 2,3–dihydroxybenzoic, gallic and 3,4–dihydroxybenzoic acids. The degradation of caffeic acid significantly improved using Fenton’s reagent in comparison to hydrogen peroxide alone. The Fenton oxidation was optimum at pH 5 when up to ~86 % of caffeic acid degraded within 5 min.
Resumo:
The presence of colour in raw sugar plays a key role in the marketing strategy of the Australian raw sugar industry. Some sugars are relatively difficult to decolourise during refining and develop colour during storage. A new approach that might result in efficient and cost-effective colour removal during the sugar manufacturing process is the use of an advanced oxidation process (AOP), known as Fenton oxidation, that is, catalytic production of hydroxyl radicals from the decomposition of hydrogen peroxide using ferrous iron. As a first step towards developing this technology, this study determined the composition of colour precursors present in the juice of cane harvested by three different methods. The methods were harvesting cane after burning, harvesting the whole crop with half of the trash extracted and harvesting the whole crop with no trash extracted. The study also investigated the degradation at pH 3, 4 and 5 of a phenolic compound, caffeic acid (3,4–dihydroxycinnamic acid), which is present in sugar cane juice, using both hydrogen peroxide and Fenton’s reagent. The results show that juice expressed from whole crop cane has significantly higher colour than juices expressed from burnt cane. However, the concentrations of phenolic acids were lower in the juices expressed from whole crop cane. The main phenolic acids present in these juices were p-coumaric, vanillic, 2,3–dihydroxybenzoic, gallic and 3,4–dihydroxybenzoic acids. The degradation of caffeic acid significantly improved using Fenton’s reagent in comparison to hydrogen peroxide alone. The Fenton oxidation was optimum at pH 5 when up to ~86% of caffeic acid degraded within 5 min.
Resumo:
This thesis reports on an investigation to develop an advanced and comprehensive milling process model of the raw sugar factory. Although the new model can be applied to both, the four-roller and six-roller milling units, it is primarily developed for the six-roller mills which are widely used in the Australian sugar industry. The approach taken was to gain an understanding of the previous milling process simulation model "MILSIM" developed at the University of Queensland nearly four decades ago. Although the MILSIM model was widely adopted in the Australian sugar industry for simulating the milling process it did have some incorrect assumptions. The study aimed to eliminate all the incorrect assumptions of the previous model and develop an advanced model that represents the milling process correctly and tracks the flow of other cane components in the milling process which have not been considered in the previous models. The development of the milling process model was done is three stages. Firstly, an enhanced milling unit extraction model (MILEX) was developed to access the mill performance parameters and predict the extraction performance of the milling process. New definitions for the milling performance parameters were developed and a complete milling train along with the juice screen was modelled. The MILEX model was validated with factory data and the variation in the mill performance parameters was observed and studied. Some case studies were undertaken to study the effect of fibre in juice streams, juice in cush return and imbibition% fibre on extraction performance of the milling process. It was concluded from the study that the empirical relations developed for the mill performance parameters in the MILSIM model were not applicable to the new model. New empirical relations have to be developed before the model is applied with confidence. Secondly, a soluble and insoluble solids model was developed using modelling theory and experimental data to track the flow of sucrose (pol), reducing sugars (glucose and fructose), soluble ash, true fibre and mud solids entering the milling train through the cane supply and their distribution in juice and bagasse streams.. The soluble impurities and mud solids in cane affect the performance of the milling train and further processing of juice and bagasse. New mill performance parameters were developed in the model to track the flow of cane components. The developed model is the first of its kind and provides some additional insight regarding the flow of soluble and insoluble cane components and the factors affecting their distribution in juice and bagasse. The model proved to be a good extension to the MILEX model to study the overall performance of the milling train. Thirdly, the developed models were incorporated in a proprietary software package "SysCAD’ for advanced operational efficiency and for availability in the ‘whole of factory’ model. The MILEX model was developed in SysCAD software to represent a single milling unit. Eventually the entire milling train and the juice screen were developed in SysCAD using series of different controllers and features of the software. The models developed in SysCAD can be run from macro enabled excel file and reports can be generated in excel sheets. The flexibility of the software, ease of use and other advantages are described broadly in the relevant chapter. The MILEX model is developed in static mode and dynamic mode. The application of the dynamic mode of the model is still under progress.
Resumo:
"Raw Shining", a song by Zimbabwean Australian artist Blaq Carrie, was recorded and produced as part of the Indie 100 research intensive project within the Independent Music Project (IMP). The IMP is an ongoing, interdisciplinary research arm within QUT.
Resumo:
Considerable work has been undertaken to determine an economical process to provide sugarcane trash as a fuel for cogeneration. This paper reviews efforts to provide that trash fuel by harvesting, transporting and processing the trash with the cane. Harvesting trash with the cane has the advantage that cane that would otherwise be lost by extracting it with the trash is captured and sugar can be produced from that cane. Transporting trash with the cane significantly reduces the bulk density of the cane, requiring substantial changes and costs to cane transport. Shredding the trash at the harvester and compacting the cane in the bin prior to transport are possible methods to increase the bulk density but both have considerable cost. Processing trash through the sugar factory with the cane significantly reduces sugar recovery and sugar quality. Although considerable knowledge has been gained of these effects and further analysis has provided insights into their causes, much more work is required before whole crop harvesting and transport is an economically viable means of trash recovery.
Resumo:
Background Strand specific RNAseq data is now more common in RNAseq projects. Visualizing RNAseq data has become an important matter in Analysis of sequencing data. The most widely used visualization tool is the UCSC genome browser that introduced the custom track concept that enabled researchers to simultaneously visualize gene expression at a particular locus from multiple experiments. Our objective of the software tool is to provide friendly interface for visualization of RNAseq datasets. Results This paper introduces a visualization tool (RNASeqBrowser) that incorporates and extends the functionality of the UCSC genome browser. For example, RNASeqBrowser simultaneously displays read coverage, SNPs, InDels and raw read tracks with other BED and wiggle tracks -- all being dynamically built from the BAM file. Paired reads are also connected in the browser to enable easier identification of novel exon/intron borders and chimaeric transcripts. Strand specific RNAseq data is also supported by RNASeqBrowser that displays reads above (positive strand transcript) or below (negative strand transcripts) a central line. Finally, RNASeqBrowser was designed for ease of use for users with few bioinformatic skills, and incorporates the features of many genome browsers into one platform. Conclusions The features of RNASeqBrowser: (1) RNASeqBrowser integrates UCSC genome browser and NGS visualization tools such as IGV. It extends the functionality of the UCSC genome browser by adding several new types of tracks to show NGS data such as individual raw reads, SNPs and InDels. (2) RNASeqBrowser can dynamically generate RNA secondary structure. It is useful for identifying non-coding RNA such as miRNA. (3) Overlaying NGS wiggle data is helpful in displaying differential expression and is simple to implement in RNASeqBrowser. (4) NGS data accumulates a lot of raw reads. Thus, RNASeqBrowser collapses exact duplicate reads to reduce visualization space. Normal PC’s can show many windows of NGS individual raw reads without much delay. (5) Multiple popup windows of individual raw reads provide users with more viewing space. This avoids existing approaches (such as IGV) which squeeze all raw reads into one window. This will be helpful for visualizing multiple datasets simultaneously. RNASeqBrowser and its manual are freely available at http://www.australianprostatecentre.org/research/software/rnaseqbrowser webcite or http://sourceforge.net/projects/rnaseqbrowser/ webcite